
Where innovation starts

Department of Mathematics and
Computer Science
Center for Analysis, Scientific Computing
and Applications (CASA)
Postbus 513, 5600 MB Eindhoven
The Netherlands
www.tue.nl

Author
Menno Hofsté (0996144)

Supervisor
Michiel Hochstenbach

Date
July 15, 2019

Digit recognition using Linear Algebra
and Deep Learning

2WH40 Bachelor End Project

Menno Hofsté (0996144)
m.l.hofste@student.tue.nl



Abstract

Applications of digit and character recognition are everywhere. This paper explores three differ-
ent ways to classify handwritten digits, which are k-nearest neighbour algorithm, singular value
decomposition, and neural network. First, we illustrate the techniques by numerical examples. Fun-
damentals of these techniques are explained, and their computational complexities and accuracies
are discussed. Finally, we conclude that the different properties of the methods makes them useful
for different applications.
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1 Introduction

Applications of automatic digit and character recognition are everywhere. Examples are recognising
street signs, digitising old documents, or searching for words that appear in a photograph. The poten-
tial in this field is enormous, and as such there is also a lot of research done in this area [1]–[4]. The
automatic classification of handwritten digits is often considered as a standard problem in pattern recog-
nition, because many challenges of pattern recognition are present [2]. The research done in this area led
to a number of ways to solve this problem. This thesis will give an overview of some of those popular
techniques and compare them.

To compare the various techniques, we used labelled images from a subset of the US Postal Service
Database which was packaged with a book from Hastie et al [5]. This data set is split up into 2 sets.
There is a training set, which consists of a digit and an image representing that digit. This is the only set
which the algorithms and models have complete access to. The other set is called a test set. This set also
consists of a digit and an image representing that digit; however in this case the algorithms and models
only have access to the images. This set is given as input after which a classification attempt is made by
using the technique under consideration on the test set. Then the corresponding digit in the test set can
be used to decide whether or not the classification is correct.

Each image in the data set has a dimension of 16 × 16 and thus consists of 256 pixels. The image
is a black-and-white monochrome image, where each pixel has a certain gray-scale value between −1
and 1 with a step size of 5 · 10−4. In this paper the lowest pixel value in an image is chosen to be
completely white and the highest pixel value black. This is merely a convention such that the black
digits are displayed on a white background.

The following structure is present in the paper. First, in Section 2, test images will be compared with
the training images with the k-nearest neighbour algorithm. Secondly, in Section 3, test images are
classified on their distance to subspaces spanned by the training images for a particular number. Finally,
in Section 4, images are classified through the use of a neural network model.

Section 2 starts with the remark that each image can be represented by a point in a 256-dimensional
space. In this space each element of the vector corresponds to the brightness of a pixel, hence this space
will be called the pixel space. In this section, the similarity between two images is made more concrete.
Then the idea is to classify a test digit as the digit corresponding to the most similar digit.

Section 3 exploits the fact that all training images for a particular number form a subspace. Using the
singular value decomposition this space is represented in a more convenient way. The idea is to classify
a test digit as the digit corresponding to the closest subspace.

In Section 4 we train a model on the training images in the hope that patterns pertaining to different
images are extracted. Test images are then given as input to the model, where the model can use the
different patterns to recognise a digit. Fundamental parts of a neural network will be explained with the
use of a small example, after which it will be applied to the digit recognition problem.

Finally, we draw some conclusions in Section 5. In the appendix the reader can find parts of the code
created in MATLAB 2019a.
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2 k-Nearest Neighbour (kNN)

As mentioned in Section 1 the test set is a subset of the data set from which both the label and the image
may be used. If an unlabelled image needs to be classified, we compare this image to each image in the
training set and use the label of the most similar image. The nearest neighbour algorithm is based on
this idea [6].

The nearest neighbour approach is very susceptible to outliers. Imagine an image of a number zero that
is written in such a way that it closely resembles a six, and that there are two other images of a six written
in almost the same way as the zero. Suppose you want to classify a six that most closely resembles the
zero. In that case all information of the other two images of a six are completely ignored, hence returning
an incorrect result. This particular problem can be avoided by looking at the three most similar images
and choosing the most occurring one. Looking at the three nearest neighbours is known as the k-nearest
neighbour algorithm, where k = 3. For simplicity in the remainder of this section assumes that k = 1
unless stated otherwise.

It is important to note that, disregarding the space and time constraints, one of the most difficult task for
this particular technique is measuring similarity. Section 2.1 explores ways to relate different measures
of similarity. Accuracy is important, however for many applications the speed of the algorithm is also
important and as a result the space and time complexity are the focus in Section 2.2. In Section 2.3 we
try to optimise the technique further at the cost of accuracy.

2.1 Similarity

Before this technique can be used to solve the handwritten digit recognition problem, a measure of
similarity needs to be established. In mathematical terms, the pixel space needs to become a metric
space.

Definition [7]. A metric space is a pair (X, d), where X is a set and d is a metric on X (or distance
function on X), that is, a function defined on X×X such that for all x, y, z ∈ X we have:

• d is real-valued, finite and non-negative.

• d(x, y) = 0 if and only if x = y.

• d(x, y) = d(y, x).

• d(x, y) ≤ d(x, z) + d(z, y).

For the pixel space to become a metric space a suitable distance function needs to be defined. A lot
of research has been done in this area resulting in many different distances. There are more generic
distances such as the 1-norm and Euclidean distance, and there are more specialised distances. Several
distances useful for digit recognition are the Fuzzy Image Metric (FIM) [8], Generalized Hausdorff
distance [9], Tangent distance [10], and IMage Euclidean Distance (IMED) [11].

The FIM is primarily used in image quality assessment for image compression. The Generalized Haus-
dorff distance is very useful in comparing shapes in binary images. The Tangent distance is developed
particularly for digit recognition and takes various transformations into account. IMED is similar to the
more general Euclidean distance, however small perturbations result in a smaller difference [11].
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First, we discuss the Euclidean distance and the 1-norm applied to the classification problem and their
performance is measured. After this, the Tangent distance will be inspected further as, according to
Wang et al [11], it results in the highest accuracy among the distances relevant to digit recognition.

2.1.1 Euclidean distance / 1-norm

Both the Euclidean distance and the 1-norm are used to compare points in the pixel space. Flattening an
image consisting of 16 by 16 pixels results in a point in the pixel space. A visualisation of flattening a 3
by 3 image can be found in Figure 1.

1 2 3
4 5 6
7 8 9

1 2 3 4 5 6 7 8 9

Figure 1: Flattening, or reshaping, of a 3 by 3 image
.

In this section, the pixel space is constructed as a subspace of the 256-dimensional Euclidean space,
R256, which is a Hilbert space [7]. This implies that the pixel space is a complete metric space and
hence has a valid metric. Given two vectors, x and y, the Euclidean distance [7] in the pixel space is
defined as

d(x,y) = ‖x− y‖2 =

√√√√ 256∑
i=1

(xi − yi)2 =
√

(x− y) · (x− y) =

√∥∥∥(x− y)◦2
∥∥∥
1
.

Here, ◦ denotes the Hadamard power or entrywise power. The 1-norm, otherwise known as the Taxicab
or Manhattan distance, is also a valid metric [12]. Given the vectors x and y in the pixel space, the
1-norm distance is defined as

d(x,y) = ‖x− y‖1 =

256∑
i=1

|xi − yi| = |x− y| .

We define x as the image that needs to be classified. Using these metrics, the distances between x and
all images of the training set can be calculated. Then, x is classified as the digit corresponding to the
image with the smallest distance to x.

The explanation has been abstract thus far, so to make these ideas more concrete a very small example
is presented. For this example, the digit that needs to be classified can be seen in Figure 2a. The training
set only contains a 4 and a 6, which can be found in Figures 2b and 2c respectively. For convenience,
the images in Figures 2a, 2b, and 2c will be referred to by the vectors x,y, and z.
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(a) Test digit x.
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(b) Training data y.
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(c) Training data z.

Figure 2: Three different images from the US Postal data set.

The first step is to find the distance between x and y and the distance between x and z. In Figures 3 and 4
the results of the operations

u = (x− y)◦2 and v = (x− z)◦2

can be found. These operations are the equivalent of taking the pixel wise difference between the two
images and then squaring each individual pixel value. Notice that these operations are present in the
definition of the Euclidean distance. To calculate the distance from this, for both u and v the sum of
all the pixel values is taken. Notice how more overlap between the test and training images lead to
“difference”-vectors with less black values.
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Figure 3: The vector u.
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Figure 4: The vector v.

The sum of all pixel values of u and v are 12.55 and 15.83. This means the following:

12.55 < 15.83

=⇒
256∑
i=1

ui <
256∑
i=1

vi

=⇒
256∑
i=1

(xi − yi)2 <
256∑
i=1

(xi − zi)2

=⇒

√√√√ 256∑
i=1

(xi − yi)2 <

√√√√ 256∑
i=1

(xi − zi)2

=⇒ ‖x− y‖2 < ‖x− z‖2
=⇒ d(x,y) < d(x, z)
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In other words, the result that 12.55 < 15.83 implies that x more closely resembles y than z. Since
there are only two training samples this also means that the test digit will now be classified as the digit
of the most similar image, which is a six. This is how a digit is classified using the nearest neighbour
algorithm in conjunction with the Euclidean distance.

One may note that even though the example was set up to do a correct classification, the difference
between u and v is pretty small. This is related to the fact that the 6 in Figure 2b is “wider” and “fatter”.
Furthermore, the Euclidean distance is also susceptible to rotations, scaling and transformations. The
latter of which is illustrated in Figures 5 and 6.

Figure 5: Transposition of x. Figure 6: Difference x and its transposition.

The difference between the sum of the elements of Figure 2a and the same image shifted left by four
pixels is 17.52. This distance is greater than both the other digits. To deal with these weaknesses the
Tangent distance was developed.

2.1.2 Tangent distance

As mentioned before, the 1-norm and Euclidean metric are very susceptible to translations and rotations.
The Tangent distance is developed to be invariant with respect to translation, rotation, scaling, shearing,
line thickness, and two hyperbolic transforms [11]. An example of shearing is the mapping from (x, y)
to (x+ 2y, y).

As we have already established, an image is a point in the 256-dimensional space R256. Take a point
from this pixel space. Now, define a transformation. As example, we take a rotation, such that the
parameter corresponds to the angle of the rotation. Transforming the point according to this rotation
yields another point in the pixel space for each angle of rotation. All points obtained from rotating one
point together form a 1-dimensional manifold [10], [13]. It helps to think of this as a line through the
pixel space with all slightly rotated versions of the point. If we take P to be an image representing a
three, then these rotations are the true rotations of P as can be seen in Figure 7.

In case multiple transformations are of interest, the set of transformations can be parametrised by n
parameters. This in turn yields an n-dimensional manifold.
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Figure 7: Visual representation of a manifold. Image from Simard et al [10].

The distance between two points can now be defined as the minimum distance between their respective
manifolds. A big problem with this is that the manifold will not be linear, which means that the compu-
tation of this distance is a hard non-linear optimization problem [14]. Alternatively, the distance to the
linear approximation of the manifold can be calculated as the approximation is very good for reasonably
small angles [13]. The difference can be seen in Figure 7, where the resulting rotations of the linear
approximation along with tangent vector are shown. Figure 8 also shows the difference between the true
rotations and the ones created by the linear approximation along with a sketch of the approximation in
the pixel space. Figure 9 visually shows the different distances and how they relate to each other.

Figure 8: Tangent of manifold [13].

Figure 9: Distances where P and E are points
in the pixel space [13].

The main advantage of this approach using the Tangent distance is accuracy as seven chosen transforma-
tions mentioned earlier, which should not influence distance, have less impact on the distance compared
to Euclidean distance [11]. Naturally, computing the linear approximation results in a lot of compu-
tational overhead, increasing the time complexity. The results which confirm these statements can be
found in Table 1.
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Table 1: Results of nearest neighbour with k = 1.

Distance 1-norm Euclidean Tangent
Accuracy 0.91 0.92 0.94
Time (s) 7.20 6.73 59.92

The code to calculate the tangent distance between two images is taken from Keysers et al [14] and was
slightly modified to fit the images with a different dimension.

2.2 Complexity

Certain applications of digit recognition require a faster classification time than others, such as self-
driving cars as compared to writing input on a tablet. The time complexity describes the amount of
time an algorithm takes to run. All previous subsections discuss the classification of a single digit. For
this single image a distance needs be calculated to every single training image. This cannot be avoided,
however when a second image needs to be classified the distance to each training image should not have
to be calculated all over again as the point distribution stays the same. Certain data structures, such as
the k-d tree, could reduce the amount of distances that need to be calculated.

Besides the computational cost, k-nearest neighbour as implemented until now is very sensitive to the
composition of the training data. For example, having a lot of sixes compared to zeros will mean that the
number six is much more likely to be chosen for a classification. To solve this, a lot of variations of kNN
such as the weighted k-nearest neighbour, and k-d tree nearest neighbour have been developed [15].

The computational complexity will be derived where useful.

2.2.1 Linear Search

The way the classification problem is solved up until this point is with the use of linear search, sometimes
called exhaustive or naive search. It is the “normal” implementation of kNN and does not rely on any
structuring of the data. For each image y, the distance between y and every other image in the training
set is calculated. The training images are then sorted on their distance to the image y. The most occurring
digit in the top k is picked as the result of the classification.

A tie happens when the two images closest images have different labels. The case k = 2 results in 293
ties in the used data set, which is 14.6% of all cases. The case k = 3 results in no ties happening, which
has to do with the fact that a three-way tie is only possible when the three nearest neighbour all represent
a different number. In case of a tie there are several tie-breaking actions that could be chosen:

• Choose a different arbitrary k until there is no longer a tie [16].

• Randomly choose between tied values. This is the simplest way, however since there is no reason
to make a particular a choice. This typically leads to the lowest accuracy [16].

• Start with k = 2 and increase k until the tie is broken [16].

• Adding weights to the k values. There are several different functions for assigning weights [17]. A
simple example is 1

d(x,y) as the vector y has the smallest distance to x of the k-nearest and there-
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fore has the most influence [18]. This solution corresponds to the weighted k-nearest neighbour
mentioned earlier [15].

Now, we reason about the time complexity for linear search. Let tr be the number of training images and
te the number of test images. Since both test and training images have a fixed dimension of 16× 16, the
time complexity of calculating a distance between two images is O(1), which is constant. To classify
one image, tr number of distances need to be calculated, so the time complexity is O(tr). To classify te
images, the classification of one image is repeated te times, so the total time complexity is O(tr · te).

2.2.2 k-d tree

Calculating the distance between all training images and test images requires a lot of computation, which
in turn takes time. Recall that training images can also be represented by a vector in the Euclidean
space and Euclidean space is a vector space in which all points can be ordered with respect to a single
dimension. The idea is to use these properties to create a data structure, such that a lot of candidates can
be pruned. One such data structure is the k-dimensional tree, or k-d tree [19].

The recursive creation of such a k-d tree with dimensionality 2 will be explained. All entries in the
training data set form a set S0. Sort all the points with respect to their first dimension, here x coordinates.
Now, take the median point as the root node, in the case of Figure 10 this is A(50, 50). Divide all points
into two groups, S1 and S2, which contain the points with smaller x coordinates and larger x coordinates
respectively. Now, do this recursively on S1 and S2 while using the next dimension, here y coordinates.
Repeat this while cycling through the dimensions until all points are in the k-d tree. A k-d tree can be
built in O(kn log n) time [20]. According to [19], the asymptotic running time for nearest neighbour
queries is empirically observed to be O(log n).

An example of a query is as follows. Suppose we want to find the nearest point to the point Z(60, 85).
The first coordinate of Z is bigger than A, so in the tree we traverse to the right side. The second
coordinate of Z is bigger than C, so in the tree we traverse to the right side. The first coordinate of Z
is smaller than F, so in the tree we reach a leaf node and F is thus the closest node. Now, we draw a
circle with radius d(Z,F) = 10. This circle crosses no splitting boundaries, so there cannot be a point
closer than F. In case the circle does cross a splitting boundary, there can be a closer point, so you have
to traverse up the tree a check each element in the branch corresponding to the plane the circle crosses.
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Figure 10: Points in 2-dimensional space (left) stored as nodes in a 2-d tree (right).

2.2.3 Performance

The asymptotic running time for nearest neighbour queries ofO(log n) only holds for relatively small k,
where the logarithmic behaviour is observed on a large number of training samples. Due to the sparsity
of the data, for large k this effect becomes even more pronounced. For example, for k = 16 a search
of a k-dimensional tree of 76,000 records examines almost every record, which means that (almost) no
pruning is happening and that the tree has lost its purpose [21]. To put this into perspective, the data
set in this paper has a dimensionality of k = 256 with only 1,707 training images. As a result, using
the k-d tree still requires that the distance to all training images needs to be calculated to find the most
similar one, while incurring the overhead of precomputing the data structure. This can be seen in the
results in Table 2. Since the k-d tree nearest neighbours queries take as much time as the linear search,
the estimated data structure overhead is as much as 25%.

Table 2: Results of kNN on training data set. The time includes preprocessing and the querying of all
test images.

k 1 2 3 4 5
Accuracy 0.92 0.90 0.91 0.90 0.90
Time Linear (s) 0.34 0.30 0.31 0.29 0.30
Time k-d tree (s) 0.59 0.36 0.34 0.36 0.37

Furthermore, unexpectedly the accuracy only decreases as k increases. This can be explained as a
combination of sparse data and no labelling errors in the training set. A consequence of the sparsity of
the data is that images with a bigger distance to the unknown image are included and exercise influence
on the classification of that image. Paraphrased, this means that more and more irrelevant images are
used to classify an image, hence leading to less accurate results.

Note that the times are not comparable with Table 1. This is related to the fact that the algorithm was
run on an implementation which is specifically crafted to only be influenced by the time the distance
calculation takes without any other optimizations such as to have a level playing field.
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2.3 Approximate methods

Storing the data in k-d trees did not prove successful in bringing down the running time for applications
with a time constraint. For these kinds of applications, derivatives of the k-nearest neighbour method
have been developed under the name approximate nearest neighbour.

This class of nearest neighbour techniques exploits redundancy to reduce the computational cost. The
training data set in this paper has 1,707 entries, which contains 252 images representing the number
one. There is guaranteed to be a lot of overlap between these images. The name contains “approxi-
mate”, because reducing overlap almost always comes in some form of data simplification where some
information will be lost.

The term approximate nearest neighbours is a hypernym, meaning that there are many algorithms falling
under the name such as locality sensitive hashing, clustering, etcetera [15], [22]. Ultimately, approximate
nearest neighbour only yields improvement in time complexity and memory use, while sacrificing some
accuracy.

2.3.1 Nearest Mean

One way to reduce redundancy and overlap is by grouping together duplicate images. All metrics have
the properties and results for vectors such that x = y:

x = y =⇒ d(x,y) = 0 See [7], [10]

d(x, z) ≤ d(x,y) + d(y, z) = d(y, z)

d(y, z) ≤ d(y,x) + d(x, z) = d(x, z)

=⇒ d(x, z) = d(y, z)

This proves that the distance from an arbitrary image to two identical training images will be the same.
This means that duplicates in the training data set can be removed without affecting the accuracy of the
algorithm.

The sparsity of the data implies that the amount of duplicates in the training set will be very limited,
hence this will barely improve the speed. If more performance is still desired, images with very small
differences can then be merged. The threshold for clustering two images has to be experimented with to
find the optimal value. However, this is a trade-off, since a lower threshold will yield better accuracy, yet
a lower performance and vice versa. Setting the threshold to 0 will give the same results as the “standard”
nearest neighbours, while setting no bound for the threshold will result in merging everything and yield
the nearest mean.

With no bound, all images of the same class are merged into a vector. This vector will simply be the
average image for each class. On the left side in Figure 11 a normal 3 can be seen beside the “average”
3. Here, the loss of information is also clearly illustrated.

10
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Figure 11: A 3 occurring in the training set and the average 3 vector.

As stated before, the computation of all of the mean images takes O(tr) time, with tr the number of
training images. The main advantage of this approach is speed, since each test image has to be checked
against only 10 other images. As a result, a single classification has a time complexity of O(1) for an
image of a fixed size. For te number of classifications the total asymptotic computational complexity is
O(te + tr).

The results, as seen in Table 3, portray a significant speed advantage over the results seen in Table 1.
An important thing to note is that each class now only has one representative. As a result, the linear
approximations of the manifolds cannot overlap with images already present in the training set. This
in turn leads to the Tangent distance yielding a much bigger improvement over the Euclidean distance,
while having relatively the same performance penalty.

Table 3: Results of Nearest Mean.

Distance 1-norm Euclidean Tangent
Accuracy 0.71 0.81 0.88
Time (s) 0.04 0.03 0.34

Note that the Tangent distance in these tests is implemented in C compiled with Mex, so the time values
of the Tangent distance can only be meaningfully compared with the same implementations in this paper.

In this section the distance from a new image to (a subset of) all images in the training set was used
to identify images. The images associated with the same number span a subspace of R256. In the next
section the distance to this subspace will be used to classify digits instead.
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3 Singular Value Decomposition (SVD)

The approach using SVD is similar to, and could even be viewed as an implementation of, the approx-
imate nearest neighbour approach. The application of kNN to the task of classifying images is known
to suffer from various phenomena that arise when analysing high-dimensional spaces. Problems that we
have seen until now that result from this are the severely reduced effectiveness of the k-d tree and the
fact that increasing k reduces accuracy. These various phenomena are known as the curse of dimension-
ality [23].

Dimensionality reduction is the process of reducing the number of random variables under considera-
tion [24]. To retain as much information as possible, the data is transformed from the high-dimensional
space to a space of fewer dimensions, in a process known as feature extraction. In this paper, the sin-
gular value decomposition (SVD) is used. This technique is also known as the principal component
analysis (PCA) in the field of statistics.

SVD is regularly researched in the context classifying images of faces and handwritten digits [2], [4]. In
this section the SVD and particularly the left-singular vectors are used to classify handwritten digits.

3.1 Training

In this subsection, several concepts of subspaces and the SVD are explained together with their role in
the context of image classification. As mentioned before, it is easier to work with images in the form
of a vector as compared to a matrix or grid and therefore, images are flattened first. Next, a matrix An

is created for each of the digits, such that the columns consist of all column vectors representing the
number n. Suppose ai with i = 1, 2, 3, . . . , k are the training vectors representing the number n. The
matrix has the following structure:

An =

 a1 a2 · · · ak

 .

For example, the columns of the matrix A3 consists of all vectors which are labelled as the number
three.

The column space of a matrix A is a space containing all linear combinations of its column vectors.
The column space of A is also called the image or range, R(A), of A. The set of all possible linear
combinations is also called the (linear) span or linear hull.

The column space of An is now a space containing all linear combinations of the images that represent
the number n. Each number has a subspace of the pixel space associated with it. This can already be
used for classification. All that needs to be done is to calculate this distance between the test image and
all linear subspaces. The number associated with the subspace that is closest to the test image is chosen
as the label of the test image.

Each linear subspace is spanned by a lot of vectors. This results in a very expensive distance computation
and a lot of overlap of the different subspaces. An image that is in both subspaces will have a distance
of zero to both, so overlapping subspaces are guaranteed to result in worse accuracy.

This way of classifying is thus both very slow and inaccurate. To improve this, the SVD will be used to
find vectors that span smaller subspaces.
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Theorem. (SVD) Any matrix A ∈ Rm×n, with m ≥ n can be factorised

A = UΣVT ,

where U ∈ Rm×m and V ∈ Rn×n orthogonal, and Σ ∈ Rm×n is rectangular diagonal,

Σ = diag(σ1, σ2, . . . , σn),

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

The values on the diagonal of the matrix Σ are known as the singular values, while the columns of U
and V are called the left-singular and right-singular vectors respectively [2], [25].

The derivation below shows that the left-singular vectors are the set of eigenvectors of AAT . These are
thus obtained by solving the eigenvalue problem AATx = σx.

A = UΣVT

AT = VΣTUT

⇒ AAT = UΣVTVΣTUT

⇒ AAT = UΣ(VTV)ΣTUT

⇒ AAT = U(ΣΣT )UT

ΣΣT is a real symmetric matrix, so the eigenvectors can be chosen to be orthogonal. The remainder of
this section assumes that the eigenvectors are orthonormal, which is obtained by dividing the eigenvec-
tors by their norm.

We define p as the rank of A, then we have the following:

R(A) = {Ax : x ∈ Rn}
= {UΣVTx : x ∈ Rn}
= {UΣy : y ∈ Rn}

= {
n∑

j=1

ujcj : cj ∈ R}

= R(

 u1 u2 · · · up

).

This means that the first n columns of U form an orthonormal basis forR(A), that is the first k columns
of U are orthogonal and they are all unit vectors [4]. In Section 3.2.2 the importance of orthonormality
will be explained. To clarify, the first k columns of Un form the orthonormal basis, so from this point
onwards Un refers to the first p columns of Un.

The fact that the singular values are in decreasing order means that the corresponding left-singular vec-
tors are in decreasing order of importance. Intuitively, the first k columns of U span a space using the k
most important orthogonal directions. The first three columns of U3 are visible in Figures 12, 13 and 14.
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Figure 12: Column 1 of U3. Figure 13: Column 2 of U3. Figure 14: Column 3 of U3.

In this section several concepts were explained and how they are useful in the context of image classifica-
tion. In the next subsection these concepts, and the SVD in particular, together with some mathematical
operations will be used to identify the images from the test set.

3.2 Classification

In this section the classification procedure using these ideas is explained in more detail and more infor-
mation is given with regard to finding the distance to a linear subspace.

3.2.1 Subspace spanned by training vectors

The distance between an image and a subspace cannot be computed directly. To do this, the distance
between an image and its orthogonal projection on the subspace needs to be calculated instead.

Figure 15: Orthogonal projection on the column space of A, or col(A) [26].

Suppose that x is the vector that needs to be classified and that x̂ = Pnx is the orthogonal projection of
x on the subspace representing the number n. The distance between x and x̂ is (see Figure 15)

‖x− Px‖2 =
∥∥x−An(AT

nAn)
−1

AT
nx
∥∥
2
.

For each new vector the distance to each subspace is calculated. Suppose that the closest subspace is
R(An), which would mean that x is classified as the number n. Notice that the column space of An

must be spanned by linearly independent vectors for the inverse of AT
nAn to exist.
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Intuitively, the linear projection of a vector is in fact the best approximation of the vector using a linear
combination of the basis vectors. An image representing the number three (Figure 16) and number
nine (Figure 18) can be found below. To see how this projection affects the image, the orthogonal
projections on the column space of A3 of those numbers can be found besides them in Figures 17 and 19
respectively. Note that both Figure 16 and 18 are not from the training set, since a projection of a training
image representing the number n on the range of An is just the vector itself.

Figure 16: Image representing a 3 from the test
set.

Figure 17: Orthogonal projection of Figure 16
on the range of A3.

Figure 18: Image representing a 9 from the test
set.

Figure 19: Orthogonal projection of Figure 18
on the range of A3.

Recall that the column space of A3 contains all linear combinations of the training images representing
a three. We expect there to be a linear combination closely matching the number three, while no such
combination for the number nine exists. Figures 17 and 19 confirm this expectation as the projection
of an image representing the number three on R(A3) yields a very similar image to the original, while
projecting a nine on this space introduces a lot of noise.
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3.2.2 Using the SVD

The first step to classify digits using the SVD is to create the same matrices An for each digit n as created
before. We define kn as rank(An), avoiding having to write rank(An) everywhere. As mentioned in
Section 3.1, the singular value decomposition of each An results in the matrix Un, which is a 256× kn
matrix whose columns spanR(An). Hence, the columns of Un are u1, . . . , ukn . So UT

n and Un are:

UT
n =


uT1
uT2
...
uTkn

 , Un =

 u1 u2 · · · ukn

 .

As mentioned before, the column vectors of Un are all orthogonal and unit vectors. This means that
ui · ui = 1 and ui · uj = 0 for all i 6= j, where · denotes the dot product. The matrix multiplication of
UT

n and Un then yields:

UT
nUn =


u1 · u1 u1 · u2 · · · u1 · ukn
u2 · u1 u2 · u2 · · · u2 · ukn

...
. . .

...
ukn · u1 ukn · u2 · · · ukn · ukn



=


1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1


= I

Substituting this in the formula for the distance between a vector and its orthogonal projection yields:

‖x− Px‖2 =
∥∥x−Un(UT

nUn)
−1

UT
nx
∥∥

=
∥∥x−UnI

−1UT
nx
∥∥
2

=
∥∥x−UnUT

nx
∥∥
2

Therefore, the distance between a vector and a subspace spanned by the columns of Un is∥∥x−UnUT
nx
∥∥
2
.

In Table 4, the subspace corresponding to each number is stated with the amount of basis vectors and the
amount of column vectors of An. Note that the training set for some numbers has an equal amount of
basis vectors compared to orthonormal vectors. This means that every vector in An was already linearly
independent.

Table 4: Number of basis vectors used to span the different subspaces.

n 0 1 2 3 4 5 6 7 8 9
kn 245 100 202 131 122 88 151 166 144 132
number of columns An 319 252 202 131 122 88 151 166 144 132
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3.3 Performance

The difference in speed between using linearly independent columns of An and the orthonormal columns
of Un consists of two main parts. First, the basis columns of An must be chosen. To do this, each column
vector needs to be checked whether or not they are a linear combination of the previous columns. This
is an expensive computation when compared to computing the SVD. The second part responsible for the
difference is the distance function. In Section 3.2.2 we saw that the orthonormality condition resulted
in a simplified calculation. In Table 5 the difference between the running time of both distances can be
seen.

At this point, all the columns of Un are used to span the space on which the vectors are projected. As
mentioned before, the singular vectors are ordered from important to less important. The first r vectors
of Un span a subspace of R(A) that contains the most important features for the number n. A feature
then is a certain combination of pixel values. The amount of orthogonal vectors r to be taken as our
basis is yet to be determined.

The choice for r must be independent from the test set, so different amounts of vectors are tested on the
training set and their results are plotted in Figure 20. A projection onto a subspace spanned by more
elements naturally has a higher computational cost. Figure 21 shows a clear upwards trend with respect
to the time the algorithm takes. The slight peak in Figure 21 can be explained by caching optimisations
between subsequent runs and would disappear when repeating this test multiple times.

Figure 20: Accuracy plotted against r values. Figure 21: Time plotted against r values.

For a better overview, some data values at different intervals can be found in Table 5. The time dif-
ference between the simplified distance based on the orthonormality condition and the standard linear
independence can also be seen here. The graph in Figure 20 indicates that r = 15 strikes a good balance
between speed and accuracy.

Table 5: Results of SVD classifier.

r value 1 2 5 10 15 20 25
Accuracy 0.80 0.86 0.90 0.93 0.94 0.94 0.94
Time orthonormal (s) 0.62 0.80 0.68 0.80 0.90 1.08 1.16
Time linear independent (s) 1.17 1.57 1.86 2.19 2.58 3.23 3.95
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The last two sections, kNN and SVD, tried to classify digits by computing the distance between a
new image and other objects to determine the label. Another entirely different way of doing this is by
constructing a model based on the training images. In the next section a neural network will be used to
label the image.
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4 Neural Network (NN)

Another popular way of solving the problem is through the use of Artificial Intelligence (AI) [3]. AI
is, at the time of writing, a hot topic with Artificial Neural Networks (ANN) receiving special attention.
In this section, a simple feedforward neural net will be created to attempt the classification of the digit
from the data set. The neural net created by Higham will be taken as a basis [27]. The XOR problem
based on the logical exclusive-or operator is a test problem that will be solved to showcase the different
elements of a neural network [28].

In Section 4.1 the structure of a neural network is explained. Section 4.2 contains information about for-
ward propagation, followed by the loss function in Section 4.3. The way a neural network is trained can
be found in Section 4.4. The choices for the example problem are motivated in Section 4.5. Section 4.6
analyses the results of the neural network that solves the XOR problem. Finally, the discussed concepts
are applied to the classification problem in Section 4.7.

4.1 Structure

There are many different complex structures such as recurrent or convolutional neural networks, however
for simplicity we will focus on a feedforward neural network. A feedforward neural network has two
main components: nodes, often called neurons, and edges. A node can have a value which is dependent
on the values of nodes connected to it, the weights of the edges, and optionally the bias. Typically, these
artificial neurons are aggregated into layers (see Figure 22).

The first layer is called the input layer. This layer contains the input neurons, which are the neurons with
a direct correspondence to the input. The last layer is called the output layer. The calculated values in
the output neurons are the final result and thus output of the neural network. All other layers are called
hidden layers as their functionality is not exposed to the user. In the example, illustrated by Figure 22,
there is only one hidden layer.

x1Input # 1

x2Input # 2

x3

x4

x5

x6 Output

Hidden
layer

Input
layer

Output
layer

w1

w2

w3

w4

w5

w6

w7

w8

w9

Figure 22: Neural network.

The sizes of the input and output layers are often largely dictated by the problem that you are trying
to solve. Generally, deciding on the number of hidden layers and the number of nodes within each
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layer is not an exact science. Rules of thumb have been suggested, however there is no widely accepted
technique [27].

One property of a feedforward neural network is that edges can only be connected between two consec-
utive layers. Consequently, the value of all nodes in the first layer need to be calculated, then the values
in the nodes of the second layer and so on. The process of calculating the nodes is aptly named forward
propagation.

4.2 Forward propagation

First, forward propagation is illustrated on the XOR example. Then, a more general formula is derived
and some notation is introduced.

The input of a neural network consists of values. The forward propagation of the example, seen in
Figure 22, goes as follows:

x1 = given by input, x3 = f(w1 · x1 + w2 · x2 + b3), x6 = f(w7 · x3 + w8 · x4 + w9 · x5 + b6),

x2 = given by input, x4 = f(w3 · x1 + w4 · x2 + b4),

x5 = f(w5 · x1 + w6 · x2 + b5),

Notice that these equations can easily be written in matrix form. These matrices will be referred to as
the weight matrices. This yields the following:x3x4

x5

 = f

w1 w2

w3 w4

w5 w6

(x1
x2

)
+

b3b4
b5

 , x6 = f

(w7 w8 w9

)x3x4
x5

+ b6

 .

A simple substitution yields the following expression for computing the output in a single step:

x6 = f

(w7 w8 w9

)
f

w1 w2

w3 w4

w5 w6

(x1
x2

)
+

b3b4
b5

+ b6

 .

The function f is called the activation function. Popular choices for this function are the linear function
f(x) = x, the Rectified linear unit (ReLU) function f(x) = x · 1{x > 0}, and the sigmoid function
f(x) = σ(x) = 1/(1 + e−x) [27]. Furthermore, the XOR problem has outputs that can be divided into
two classes, true and false, making it a classification problem. We will take the sigmoid function as the
activation function as it is typically chosen in case of classification problems.

For use further in this paper, a general formula is useful. A general formula is thus derived and some
notation is introduced. Let ` be a number corresponding to a layer, let W[`] be the weight matrix of
layer from layer ` − 1 to `, and let b[`] be the biases of layer `. We define the weighted input of layer
2 ≤ ` ≤ L before and after the activation function to be

z[`] = W[`]a[`−1] + b[`],

a[`] = f
(
z[`]
)
,

where L is the number of layers of the neural net and where a[1] corresponds to the input.
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The last, and arguably the most important, thing that is needed is a way to improve the weights and
biases such that the network as a whole behaves as desired. Changing the weights and biases for the
purpose of improving performance is called training a neural network. Before a network can be trained,
a loss function needs to be computed.

4.3 Loss function

The loss function, also known as the cost function, is necessary to gauge the performance of the neural
network. A loss function takes the predicted output, xp ∈ {0, 1, . . . , 9}, and the actual output, x6 as
inputs and gives a measure of difference between the two. In this paper the Mean Squared Error (MSE)
is used, where n is the number of training samples. The MSE is differentiable and has some other
convenient properties, which made it very popular for feedforward neural networks such as this one.
The formula is displayed below.

C =
1

n

n∑
i=1

(x6 − xp)2.

4.4 Training the network

Training the network is the act of improving the weights and biases in such a way that the neural network
behaves as desired. The two ways discussed in this paper of improving these are through neuroevolution
and back propagation. Before the weights can be improved, initial weights need to be chosen. There
are several ways to pick these, however in this paper for the sake of simplicity they are initialised to
a random number. This can be any random number, however since very big or small values make the
process slower we take random numbers from a normal distribution.

4.4.1 Neuroevolution

Neuroevolution (NE) is the artificial evolution of neural networks using Genetic Algorithms (GA). GA
are inspired by the process of natural selection. Neuroevolution starts with creating several neural net-
works initialised with random weights and biases. Then the models are tested on the training set and
given a fitness score based on how well they performed. The fittest neural networks have a chance to
create so-called offspring, which is a new neural network with a combination of the parents weights and
biases. For each of the fittest there is also a chance to mutate, which randomly changes the weights by
some small amount [29].

There are also more advanced NE algorithms such as the Neuroevolution with Augmenting Topology
(NEAT). Mutations with NEAT also include the possibility to change the topology or structure of the
network [30].

4.4.2 Gradient descent

A popular way of improving an NN is through gradient descent with back propagation. In Section 4.3,
the loss function has been defined, which consists only out of the weights and inputs x1, x2, and x3. That
makes this an optimisation problem, where the loss function needs to be minimised. The calculation of
the gradient requires the loss function to be differentiable and hence also continuous. Even though there
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are solutions to solve this, however in this case this would add unnecessary complexity. Differentiable
activation functions are thus easier to work with and hence are generally preferred.

To make use of back propagation, first define the error in the jth neuron to be

δ
[`]
j =

∂C

∂z
[`]
j

, for 2 ≤ j ≤ n and 1 ≤ j ≤ n`

where n` is the number of neurons in layer `. We point out that the usage of the term error is somewhat
ambiguous. The idea of referring to δ[`]j as an error seems to have arisen because the cost function can

only be minimum if all partial derivatives are zero, so δ[`]j = 0 is a useful goal.

Substituting the various formulas together with the chain rule, which can be found in the paper of
Higham et al [27], yields the following:
Lemma [27]. We have

δ[L] = σ′(z[L]) ◦ (aL − x1), (1)

δ[`] = σ′(z[`]) ◦ (W[`+1])
T
δ[`+1], for 2 ≤ ` ≤ L− 1, (2)

∂C

∂w
[`]
jk

= δ
[`]
j a

[`−1]
k , for 2 ≤ ` ≤ L, (3)

∂C

∂b
[`]
j

= δ
[`]
j , for 2 ≤ ` ≤ L. (4)

Here, ◦ also denotes the Hadamard or entrywise product. Recall that in Section 4.2 the input is propa-
gated forward. This results in an output aL, which corresponds to x6 in the XOR example. The error
of the output δ[L] is computed. Now, in a process called back propagation, the errors δ[p] of the layer p
with p = L − 1, . . . , 2 are calculated. The error for layer 1 is not calculated as the input is given and
cannot be changed with adjusting weights.

At this point a vector δ[`] exists for each layer. The last step to perform is to update the weights and
biases using this vector and a single gradient descent step.

W[`]
new = W[`] − η ∂C

∂W

[`]

= W[`] − ηδ[`]a[`−1], see (3),

b[`]
new = b[`] − η ∂C

∂W

[`]

= b[`] − ηδ[`], see (4).

The symbol η is the learning rate or step size. This learning rate influences how quickly the weights of
the neural network are changed. Generally, a lower learning rate results in slower training, however a
larger learning rate will result in a change of weight values that is too large which means that the local
minimum may never be obtained. This is how gradient descent with the use of back propagation is
applied to a neural network.
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4.5 XOR problem

XOR stands for exclusive or, which is a logical operation that evaluates to true only when one of the
inputs differ from each other [31]. The XOR is a logical operation, however the neural network is
numerical, so an encoding must be chosen. In this paper, true will be encoded with the number 1 and
false with the number 0. This yields the following inputs and corresponding outputs:

xor
((

0
0

))
= 0, xor

((
1
0

))
= 1, xor

((
0
1

))
= 1, xor

((
1
1

))
= 0,

This example is chosen since the solution space is not linearly separable. This means that there does
not exist a single line that can divide the different classification outputs. As a result, the problem cannot
be solved by methods such as the single layer perceptron, hence making for a simple but non-trivial
example [28]. The training set will then be the inputs with their corresponding labels. Normally, a
proper subset of the input space is trained on, however in this case there are already such few solutions
that all of the different input combinations are trained on.

In Figure 23 the reader can find the inputs with their corresponding labels. A blue cross means true,
whereas a red circle means false. For example, the exclusive-or operation on false and false yields false,
hence a circle on (0, 0)

Figure 23: Output space of the encoded XOR operation.

4.6 Performance

At this point all the necessary parts of a neural network are described. The model is now trained, however
we do not know when to stop training. To do this the performance needs to be measured. Based on those
measurements it can be decided whether or not do another forward propagation followed by a back
propagation step.

The training is done by simply cycling through the four possible inputs and training them. This guar-
antees that all elements from the input space are equally important to the final neural network. After
adjusting the weights for a training input, the neural network is tested on a similar testing data set which
it has not seen before. The values of the loss function can then be plotted to see how the neural network
is improving. In Figure 24 this plot can be seen.
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The test set used to calculate the loss in the plot is the same as the training set, so in this case the graph
cannot be used to infer any useful information. Figure 25 visually represents the solution space, where
a point in the grey areas is classified as a one, otherwise zero. Since the points from the same class fall
in the same coloured area, the conclusion can be made that the neural network behaves as desired.

Figure 24: Cost, or loss, function of the neural
network over the number of iterations.

Figure 25: Solution space of the neural net.
All inputs in the grey areas will be classified
as true, otherwise false.

4.6.1 Overfitting

One notorious problem neural networks can have is overfitting. Overfitting produces a model that cor-
responds too closely to the training data set, and therefore fails to capture the desired behaviour [32]. In
case of the example, through Figure 25, the model is not overfitted. This visualisation can only be made
because the input dimensionality is two, so for higher dimensional inputs such as the image classification
other methods need to be employed.

To deal with this when classifying digits, both the loss of the training set as well as the loss of the testing
set is graphed. Overfitting then can be recognised if the loss of the training set continues to decrease
while the loss of the test set does not [27].

4.7 Digit recognition

The basic concepts of a neural network are explained through the use of the XOR example. To apply this
to the problem of digit recognition, all important differences are highlighted and the necessary changes
described.

Structure: The example has two nodes as inputs, while an image is a vector x ∈ R256, so the input
layer now has 256 nodes. The output is now one of 10 classes from 0 to 9. Hence, the output is a
vector y ∈ R10, where the first element corresponds to the confidence 0 is the correct answer, the
second corresponds to 1 and so on [27]. As for the hidden layers, a hidden layer with 64 then a hidden
layer with 32 neurons is chosen. This structure is an estimated guess as there are no clear rules for the
structure.

Performance: As mentioned in Section 4.6, the performance in the form of time and accuracy will now
be measured on a separate test set, while plotting the error of the training set to make sure the model is
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not overfitted.

At this point the model is trained with the MSE of the data plotted in Figure 26 and the accuracy plotted
in Figure 27. As can be seen in Figure 27, the MSE of the training data is nearly zero without overfitting.
This difference suggests that more training data would increase the performance of the neural network
as the training data has an accuracy near one, while there is no overfitting present.

Figure 26: MSE of test and training data. Figure 27: Accuracy of test and training data.

In Figure 27, the number of iterations is directly proportional to the amount of time used. In Table 6,
a few points are sampled with the respective duration for that run. Concluding, the point where the
variation is bigger than the improvement is around 2 · 104 number of iterations.

Table 6: Results of the neural network on the data set.

Accuracy 0.893 0.905 0.900
Number of iterations 1 · 104 3 · 104 9 · 104

Time (s) 0.52 1.10 4.31

It is important to note that the neural network, just like the SVD, has a fixed classification time. As
mentioned earlier, the model could be improved by adding a lot more training data as the current training
data gets a classification accuracy of nearly one. These facts combined make for a model that after the
initial training period can get very accurate while having a short classification time.

We have now seen all the different techniques and in the next section some conclusions will be drawn.
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5 Conclusion

Two factors that are important are the accuracy and the speed with which the digits are recognised.
Three distinct methods to recognise digits were tested and timed. These methods are the k-nearest
neighbour algorithm, calculating distances to subspaces using the singular value decomposition, and
neural networks.

The first technique, k-nearest neighbour, relies on the similarity between any image that needs to be
classified and all images of the training set. Different measures of similarity, or metrics, such as the
Euclidean distance and Tangent distance were explored. The Tangent distance is more accurate than the
other distances, however this came at a significant cost. kNN is inherently computationally expensive,
because it requires the computation of the distance between the image that needs to be classified and
all the training images. The k-d tree was explored in an attempt to lower the computational cost by
providing the possibility to skip certain distance calculations. This was unsuccessful due to the sparsity
of the data. Approximate nearest neighbour in the form of the nearest mean did provide the increase in
speed that was sought after, however this came with a relatively low accuracy.

For the second technique, SVD, the distance to the space consisting of the linear combinations of the
training images per digit was computed instead of the distance to each point in the training set. This was
even slower and less accurate than the standard nearest neighbour. With the use of the singular value
decomposition the same subspace could now be spanned by orthonormal vectors. This gave similar
accuracy, however this method was significantly faster as a result of some nice properties provided by
the orthonormality of the vectors. Since the same space is now spanned by orthonormal vectors, the
most important vectors could be used to span a subspace with the most important features of a particular
number. This lead to a big improvement in both speed and accuracy.

The third and last technique, NN, makes use of neural networks. Neural networks is a typical example
of the eager learning method. A neural network takes a long time to train, however once it is trained
a single classification is extremely fast when compared to the other methods. As for the accuracy, the
neural network performed comparable to kNN with the 1-norm. It was noted, however, that the neural
network did not over-fit at any point and that more training images could improve this method without
any extra computational complexity with regards to the classification.

We have thus seen three techniques: kNN, SVD, and NN. We argued about their time complexities
where possible, and we have seen the strengths and weaknesses of each technique.

From our testing the SVD was the clear winner in our tests with the highest accuracy and fastest running
time. In real use case scenarios, the neural network is more likely to be chosen as this application scales
better with more training samples and more sophisticated structures.
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6 Appendix

% Load the initial data.
% For this to work you need to have a file data.mat in which
% there are structs train and test containing images and labels
load data;

% get result from the chosen classifier
% svd_comp can be replaced by one of the below defined functions
% only the name has to be changed
tic
result = svd_comp(train, test, 15, false);
toc

% Finally, check the result against the test labels and display the
% accuracy
check(result, test)

function result = svd_comp(train, test, r, orthonormal)
train.image = (train.image * 2) - 1;
test.image = (test.image * 2) - 1;

result = zeros(length(test.label), 1);

A = cell(1, 10);
U = cell(1, 10);
S = cell(1, 10);
V = cell(1, 10);

% create a matrix for each digit
for i = 1 : length(train.label)

A{train.label(i) + 1} = [A{train.label(i) + 1}, ...
train.image(:, i)];

end

% decompose the matrix for each digit
for i = 1:length(A)

[U{i}, S{i}, V{i}] = svd(A{i});
end

% find the minimum relative residual
min_rel_res = zeros(1, length(A));
for j = 1 : length(test.label)

for i = 1:length(A)
if (orthonormal)

orth_proj = U{i}(:, 1:r) * ...
transpose(U{i}(:, 1:r)) * test.image(:, j);

else
orth_proj = U{i}(:, 1:r) * ...

inv(U{i}(:, 1:r)' * U{i}(:, 1:r)) * ...
U{i}(:, 1:r)' * test.image(:, j);

end
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min_rel_res(i) = norm(test.image(:, j)- orth_proj);
end

% store index of the smallest norm
[~, i] = min(min_rel_res);
result(j) = i - 1;

end
end

function result = neural_net_simple(train, test)
result = zeros(length(test.label), 1);

% One hot vector
y = train.label == (0:9)';

% Initialize weights and biases
rng(5000);
W2 = 0.5 * randn(length(train.image(:, 1)), 64)';
b2 = 0.5 * randn(64, 1);
W3 = 0.5 * randn(64, 32)';
b3 = 0.5 * randn(32, 1);
W4 = 0.5 * randn(32, 10)';
b4 = 0.5 * randn(10, 1);

% Forward and Back propagate
% learning rate
eta = 0.3;
% number of SG iterations
N = 3e4;

for counter = 1:N
% choose a training point at random
k = randi(length(train.label));
x_train = train.image(:, k);
% Forward pass
a2 = activate(x_train, W2, b2);
a3 = activate(a2, W3, b3);
a4 = activate(a3, W4, b4);
% Backward pass
delta4 = a4 .* (1 - a4) .* (a4 - y(:, k));
delta3 = a3 .* (1 - a3) .* (W4' * delta4);
delta2 = a2 .* (1 - a2) .* (W3' * delta3);
% Gradient step
W2 = W2 - eta * delta2 * x_train';
W3 = W3 - eta * delta3 * a2';
W4 = W4 - eta * delta4 * a3';
b2 = b2 - eta * delta2;
b3 = b3 - eta * delta3;
b4 = b4 - eta * delta4;

end

for i = 1:length(test.label)
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x_test = test.image(:, i);

% Forward pass
a2 = activate(x_test, W2, b2);
a3 = activate(a2, W3, b3);
a4 = activate(a3, W4, b4);

% Check whether the neuron with the highest value is correct
[~, j] = max(a4);
result(i) = j - 1;

end
end

function result = nearest_neighbour(train, test)
k = 1;
model = fitcknn(transpose(train.image), transpose(train.label));
model.NumNeighbors = k;
result = predict(model, transpose(test.image));

end

function result = nearest_neighbour_tangent(train, test, k)
result = zeros(length(test.label), 1);
% For each testcase
for i=1:length(test.label)

best_norm = Inf;
best_labels = -ones(k, 1);

% Determine the best norm
for j=1:length(train.label)

current_norm = norm(train.image(:,j)- test.image(:,i));
if (current_norm <= best_norm)

best_norm = current_norm;

for p = 2 : k
best_labels(p) = best_labels(p - 1);

end
best_labels(1) = train.label(j);

end
end
result(i) = best_labels(1);

end
end

function result = nearest_neighbour_mean(train, test)
% average vector 1 contains the average vector of the digit 0
% create an average vector for each digit
average_vectors = zeros(256, 10);
number_of_vectors = zeros(1, 10);
result = zeros(length(test.label), 1);

% compute the total vector for each digit
for i = 1 : length(train.label)
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digit = train.label(i) + 1;
average_vectors(:, digit) = average_vectors(:, digit) ...

+ train.image(:, i);
number_of_vectors(digit) = number_of_vectors(digit) + 1;

end

% normalise the vectors
for i = 1 : 10

average_vectors(:, i) = average_vectors(:, i) ...
/ number_of_vectors(i);

end

% check which average vector is closest with respect to the dist
for i = 1 : length(test.label)

best_norm = Inf;
best_guess = -1;

% Determine the best norm
for j = 1 : 10

current_norm = sum(abs((average_vectors(:, j) ...
- test.image(:, i))));

if (current_norm < best_norm)
best_norm = current_norm;
best_guess = j - 1;

end
end
result(i) = best_guess;

end
end

function successrate = check(result, test)
success = zeros(10, 1);

for i = 1 : length(test.label)
if test.label(i) == result(i)

success(test.label(i) + 1) ...
= success(test.label(i) + 1) + 1;

end
end

% Calculate success rate
successrate = sum(success) / i;

end
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