
Eindhoven University of Technology
2IO70 DBL Embedded Systems

Making the Sorting Machine

Member:

Hofsté, M.L.
Lacquet, T.L.
Scheepers, Y.J.A.
Wordragen, G.C.

Student No:

0996144
1016388
1002370
1024503

tutored by: ir. Huberts, T.P.M.M.
supervised by: dr.ir. Cuijpers, P.J.L.

June 4, 2020

Contents

1 Summary 3

2 Introduction 4

3 System Level Requirements and Use Cases 5
3.1 Requirements . 5
3.2 Use Cases . 6
3.3 User Constraints . 6

4 Prototype 1 8
4.1 Machine specification . 8
4.2 Machine design . 8
4.3 Machine implementation . 8
4.4 Software specification . 9
4.5 Software design . 9
4.6 Software implementation . 10

5 Machine Specification 12
5.1 Fault Detection . 12
5.2 Ejecting discs . 13
5.3 Moving discs . 13
5.4 Sorting discs . 13

6 Software Specification 14

7 Machine Design 15
7.1 Cam Plate . 15
7.2 Conveyor Belt . 15
7.3 Containers . 16

8 Software Design 18
8.1 Last disc . 19
8.2 Emergency button . 20
8.3 Error detection . 20

9 Machine Implementation 21
9.1 Cam Plate . 21
9.2 Conveyor Belt . 22
9.3 Sensors . 22
9.4 Containers . 22
9.5 Overcurrent protection . 23

10 Software Implementation 25
10.1 Walk through . 25
10.2 Branch problem . 28

11 Testing 30
11.1 Component Tests . 30
11.2 Unit Test . 30
11.3 System Test . 30
11.4 Validation Tests . 31

1

12 Conclusion 33

13 Literature Overview i

14 Appendix i
14.1 Error Manual or Debug Manual . i
14.2 UPPAAL model . iii
14.3 Source code . iii
14.4 Debug program min max brightness . x
14.5 Logbook . xii

2

1 Summary

For this assignment, a sorting machine was constructed made from FischerTechnik parts. It is powered and
controlled by the ”PP2” processor, which is given directions through a custom assembler in which the source
code is written.
The machine is able to safely sort any amount of black and white discs the user has put in, into its two
containers. To do this, it takes a little over two seconds per disc. It can operate under all conditions that
can be considered ”normal”; for example the (absence of) lighting does not affect the machine, as long as
there is no strong lamp shining directly into a light sensor.
Furthermore, the sorting machine is able to detect almost all errors that can occur during runtime, both
on the mechanical and on the electrical side. When such a fault occurs, the machine will, along with its
displayed error state and accompanying error guide, run the user through the process of resolving it, after
which the machine will once again be operative.
The machine consists of three subsystems: one that uses an egg-shaped disc to push discs out of the tube
in a controlled manner and checks whether there are still discs to sort with a lamp and a light sensor; one
that uses a conveyor belt to transport the discs from aforementioned subsystem to the next, taking note of
its colour along the way; and one that consists of two containers that horizontally move in such a way that
each disc falls in the container that corresponds to its colour. Each of these units makes use of a motor and
has one or two limit switches present to keep track of this motor’s movement.

Figure 1: A systematic drawing of the sorting machine

3

2 Introduction

This report is for the course DBL Embedded Systems, provided by the University of Technology Eindhoven.
The structure of the report follows the several stages of the V-model. For every stage of the V-model there
is a section dedicated to explaining how it was used for the machine.
To get a better grasp at how everything works, a quick iteration of the entire V-model was followed during
the first two weeks, doing every step very crudely. This helped find out how the hardware specifications
should be and how the assembler code needs to look.
After this a second iteration V-model was carefully followed and our findings on it were documented. The
report starts with a section about the User Requirements and Use Cases. In this section it is shown how the
machine should be operated and what is and is not possible to do on the user side.

Figure 2: The V-Model

4

3 System Level Requirements and Use Cases

The System Level Requirements and Use Cases (SLRUC) are the same for both the different prototypes,
since every prototype is built to do the same thing with the same rules. This is why it does not appear in
the section on the first prototype as well, unlike most other parts of the V-model.
Our System Level Requirements are based on the general requirements that the Embedded Systems course’s
project guide provided.

3.1 Requirements

These are the requirements we have for our Artefact To Be Desired (ATBD) and for what use case the
product is developed:

Mechanical movement with purpose
The machine mechanically moves white and black discs with a clear purpose. It is not allowed that the
machine just moves discs without a clear reason. In the case of the sorting machine, it should be able to
distinguish the black and white discs from each other and then move them to the appropriate container.

Sensible use of motors and sensors
The operation of the machine involves the use of motors and sensors in a meaningful way. In this case that
means that the motors need to interact with the discs one way or another when a sensor detects that action is
needed. This means for instance, that a sensor is used in detecting the presence of a disc and the colour of said
disc. Another use for the sensors mentioned by the Project Guide is that it is allowed to use them to detect if
the system is acting as it is supposed to, and to verify that all the parts of the machine are operating correctly.

Only use the PP2-processor and the FischerTechnik parts
It is not allowed to use any processor or coding language other than respectively the PP2 and Assembly.
Nor is it allowed to use other parts than the FischerTechnik parts provided to us, since we are doing the
standard sorting machine.

Start in resting state
From a high-level point of view, the machine starts in a resting state. The general idea here is that the
machine starts in a state in which all the motors and lamps are off. In this state we are supposed to make
the machine ready. This means removing any parts that stayed on the conveyor belt during the last run and
filling the tube containing all the discs to be sorted.

Machine starts performing after signal (i.e. Start button)
While in the resting state, after the user is done preparing it, it can be given a signal in the form of a button
push so that the machine knows that it can start sorting.

Emergency button
The machine has an emergency button which will bring it within 1 second into, what is perceived as, an
emergency state. This state is allowed to be the resting state. It must do this in an as safe as possible man-
ner. In our case this would be to immediately stop all motors and kill the lights. Adding to this the machine
should be able to be restarted with human intervention. So manually removing discs from the machine and
setting the components in the right position again to get the machine to function again is allowed.

Reports on its internal state
There are multiple states in which the machine can be, an UPPAAL model is constructed in which a visual
representation describes the states and what they do. A state can for example be, to push a disc forward or
to get the colour or presence of a certain disc. The 7-segment display available on the PP2 is used to show

5

in what internal state the machine is in.

Recognizes mechanical failure
Using additional sensors and time-outs the machine should be able to detect a mechanical failure. This could
be a motor getting stuck, or a disc getting stuck somewhere in the machine. When the machine detects that
there is something wrong it should enter the emergency state mentioned earlier and report this to the user.
Since the PP2’s display is not big enough to clearly report errors all by itself, we should use error codes and
explain these in an accompanying guide.

Recognizes electrical failure
Using additional sensors and time-outs the machine should also be able to detect an electrical failure. Exam-
ples of this would be a disconnected wire. When this happens the machine should also enter the emergency
state just like with a mechanical failure and also report this to the user. This reporting should be done the
same way mechanical failures are reported.

Some sort of efficiency
The last requirement stated in the Project Guide is efficiency. The metrics they use are:

1. How many discs can be sorted per minute; Worst-case, bast-case, and on average?

2. Are any of the lamps and motors turned on more often than strictly necessary?

Furthermore they mention that these are not hard requirements, but that evidence needs to be provided for
each of these metrics. In other words, documentation should exist on the speed of the machine under some
different circumstances, and it needs to be reasonably efficient and fast.
All motors and lamps should be turned on as little as possible.

3.2 Use Cases

Before users are able to use the machine, they will need to connect the PP2 to a computer with the PP2
debugger program and the executable on it. The instructions in the Board User Guide will then help them
connect the PP2 to the computer.

To connect the PP2 to the hardware, the PP2 needs to be positioned besides the hardware. Every in-
put and output is labelled with numbers corresponding to the numbers on the PP2, allowing the user to
easily find the matching pin for every cable. The input wires are labelled with blue numbers, while the
output wires are labelled with black numbers.

After that the executable can be run, which will first let the machine wait in the start state, as required by
the System Level Requirements.
Now the user can simply insert the discs to be sorted, while adhering to the User Constraints, and is to then
press the start button.

In case of an emergency that the machine cannot detect, users should press the emergency button. If
the machine did detect it, following the Error Manual will resolve the problem.

3.3 User Constraints

Before starting the machine, the colour sensor might need to be calibrated slightly. This is done with a
program provided by us with the name ”min max brightness”, which also appears in the appendix.
The user is then expected to fill the tube with discs, with all discs oriented the same way and the flat side

6

up or down, and remove all discs from the rest of the machine.
Apart from pressing the start and emergency buttons, loading and unloading the discs, and resolving errors
with help of the guide, the user should not interfere with the machine and its PP2 in any way, except when
there is an emergency.
It is expected that only one electrical or mechanical fault occurs at a time. When such an error is detected,
the user is supposed to follow the instructions listed in the error correction guide.

7

4 Prototype 1

To get more acquainted with the FischerTechnik pieces, the V-model, and the project as a whole, the deci-
sion was made to do a quick iteration of the V-model. Another reason this was done, was to find out which
methods of sorting are and which are not feasible. This would help set up better specifications and make
better designs for the next version.

4.1 Machine specification

For this prototype, the main focus was on speed. Besides that, the decision was made to not make it too
complex, because it was already known that this would not be the final version. One constraint was to avoid
using conveyor belts to come up with a more creative and less obvious solution. This constraint would also
help in making sure the design is fast and somewhat simple. A side effect of these specifications is that the
end product would end up very compact.

4.2 Machine design

The discs fall from the tube onto a small platform, after which a two-pronged, fork-like structure is used to
directly push them into the correct box. This can be done very quickly and efficiently, which is in line with
the focus on speed. The colour of the disc and whether or not there are still any left would be checked while
it is still in the tube via an analogue light sensor and a lamp.
In the beginning, concrete ideas for error detection where avoided. This was not a big issue, since this
iteration of the V-model was just for orientation purposes as mentioned earlier. There was, however, some
time spend on thinking how error detection should be implemented.
This resulted in the realization that the new design needed to make the discs move a greater distance, upon
which our next prototype is built.

4.3 Machine implementation

While implementing the machine design, one issue that presented itself was making sure the fork is correctly
moved by the motor. The two possibilities were to have the motor on top of the gear rack and against it.
The former was less efficient, because it required a much more complex supporting structure, which would
have made it easier to make mistakes and caused the motor to slip semi-regularly. It is for this reason that
the latter was used.
Another issue that proved to be difficult, was to add sensors for colour and fault detection to the machine.
To prevent this from happening in the future, the future machine machine designs where made to leave as
much space in them as possible.
For the motor to move in both directions it is necessary to use an H-bridge, which gives the power to choose
in which direction the current flows through the motor. As it turns out from one of the PP2’s manuals, the
processor has special outputs specifically designed as H-bridges which we can connect the motor to.

8

Figure 3: The first prototype

4.4 Software specification

The machine would not be built to an extent where an extensive software specification was necessary. To test
it, all that was required was a simple program that gave a Pulse-Width Modulated output corresponding to
the input buttons pressed (so pressing button X would power output X). Not using Pulse-Width Modulation
(PWM) is not an option, as the project guide very clearly indicated that this would be bad for the motors and
might cause them to break down. The PWM program mentioned is extensively written about in Software
Implementation.
This program is used for manually controlling the motors and it is also a very important part in the final
design of the sorting machine.

4.5 Software design

A first observation was that because the PWM program must be used to control the motors, supposedly
simple features like a stop button can be hard to implement. When a new feature needs to be implemented
the code inside the PWM subroutine must also be changed, which means the code can get complex very
quickly. To circumvent this, the PWM subroutine was coded in such a way that this can be done more easily:
by using a timer interrupt for the Pulse-Width Modulation, while also making sure the subroutine does not
rely on any other subroutine and has its own places in memory to work with, it will stand completely on its
own and the rest of the code can be written independently of the PWM implementation.

Even though not much progress on the actual assembly code was made and necessary, an actual UPPAAL
model was made (shown below) for the code that would be needed to power this prototype. This was, like
the rest of this iteration, mostly to get more acquainted with the program.
The basic idea of this automaton is as follows: first, the machine makes sure the fork is in its rightmost
position, then it waits until the start button is pressed. In this position the fork blocks the discs from falling
out of the tube, so these can be loaded safely. As soon as that happens, it moves the fork back to the middle,
so a disc can drop onto the plate. Depending on the detected colour, the fork then moves to the right or left
until it hits the relevant limit switch, before moving back to the middle and re-starting the cycle. Whenever
it takes too long for a limit switch to be hit, we go to the error state corresponding to the motor that should

9

be working.

Figure 4: the UPPAAL model for our first prototype

4.6 Software implementation

For the simple PWM program, one main loop was used that sets the outputs that need to be powered based
on the input, and a timer interrupt that then turns these outputs on and off at the right time to deliver a
Pulse-Width Modulated output.

In the process, an attempt was made to set an interrupt for when the over-current protection is triggered,
but even though the instructions from the documentation were followed, it did not work and instead made
the program function incorrectly. Since it was not a vital part of the machine and the protection already
has a visual way of letting the user know something went wrong, the feature was omitted.

The program’s source code is shown below as pseudo-code. The original assembly code will be explained
later on. The pseudo-code offers insight in how the PWM program functions.

PWMSTATE = false;

10

INTENSITY = 80;
ACTIVE = which lamps we want to use PWM on;

PWMwithinterrupt()
EMERGENCY = emergency button state;
SENSORANAL = analogue sensor value;
if PWMSTATE

lowstate()
else

hightstate()
return

lowstate()
timer += 100 - INTENSITY;
PWMSTATE = false;
output = off
set timerinterrupt;

return

highstate()
timer += INTENSITY;
PWMSTATE = true;
output = ACTIVE;
set timerinterrupt;

return

11

5 Machine Specification

Figure 5: Sketch of the machine

For the final machine, some new specifications have been decided upon. Instead of focussing on speed, the
focus has been shifted to fault detection. Experience with the first prototype has led to the conclusion that
the machine should not be too compact, because that would make adding new sensors, systems and fault
detection unnecessarily difficult.

For further specifications, the machine has been separated into three subsystems: a mechanism to extract
the discs from the tube, one to transport the discs and check their colour and lastly, one to sort the discs.
The main benefit of separating the machine into different parts is that it was now possible to work more
efficiently, since it allowed three people to independently design and work on a single subsystem, instead
of watching one person do all the work. This also simplified the design phase, as the subsystems can be
designed independently of each other.

5.1 Fault Detection

The machine should be able to detect almost every mechanical or electrical error, assuming that only one
part is malfunctioning, and see the difference between as many as possible. It can be assumed that only one
part is malfunctioning at any given time because this is mentioned in the Project Guide.

One important requirement that has been decided upon was that between each of the three major parts
of the system (ejecting the disc from the tube, transporting the disc, and getting the disc in the right box)
the machine should detect if the disc is still there. In order to detect errors with the motors, at least one
limit switch should be used for each motor to detect if it is still functioning properly.

12

5.2 Ejecting discs

The ejection mechanism should eject the discs from the tube one by one, so our machine has more control.
When only one disc is moving in the machine at all time, the machine can conclude that when a disc is
detected somewhere in the machine, it has to be the disc ejected earlier. Secondly, this part of the machine
should check whether there are discs left that need to be sorted or not, so that the machine knows when it
can stop and when there are still discs left to be sorted. This part of the machine or subsystem will later
be referred to as Cam Plate later in the report, because that is the name of the egg-shaped FischerTechnik
part that we will use for it.

5.3 Moving discs

Our machine should have a part in which the discs travel a sufficient distance. There are two main objectives
that this system should accomplish. Firstly, it should move the discs from the ejection to the sorting
mechanism. Secondly, during the movement of the discs, this system should be able to detect what colour
the discs are and if there are even any discs passing by at all. An extra requirement is that there needs to
be a way to know if the motor is working or not, so we can that to distinguish between errors.

5.4 Sorting discs

The sorting containers are the yellow boxes in which the discs need to end up; in our machine the discs need
to end up in the right box according to the colour the PP2 received earlier through the sensors. Also, there
needs to be a way to detect in which position this mechanism is, and it should even recognize if there is a
failure with the motor, or one of the sensors. Besides that, it is important that there is no possibility that
discs end up in the wrong container or neither and it is preferred that the system does not take up a lot of
time.

13

6 Software Specification

The software should start in a resting state, just as the machine. In this state it should react to a ’signal’,
in our case a button press. After said button press the software should power the motor to eject discs from
the tube, check the colour with a sensor, and move the motors that move boxes depending on that colour.
During the transport of the discs, the motor for the conveyor belt should also be moving. Lastly, the software
should go to a ’stop’ state when there are no discs left. Whenever the emergency button is pressed, the
machine should (immediately) come to a halt and return to the start state.
Next, there are some additional ’side’ requirements our software should adhere to. It should be able to notice
if a disc goes ”missing” between one of the subsystems and it should notice if a sensor is disconnected, for
as far as that is possible.
The motors from the cam shaft, the conveyor belt and the boxes have to be controlled with Pulse-Width
Modulation, to make sure that the motors do not run too fast or too slow. Having them run too fast can do
serious damage to the motors and will make the machine less predictable, because the discs can slide and
get launched from the belt. Having them run too slow might lead to the motors not having enough force to
move at all or systems not being ready on time. For example, if the motor for the sorting part moves slower
than the transportation part, the discs will arrive at the sorting part and be sorted according to the colour
of the previous disc. If you have a FischerTechnik part to restrict the movement of a disc to only a certain
location based on its colour, but this part moves too slow, the disc will not be sorted properly.

As another restraint, lamps should only be turned on when they are needed, for example to check for
discs moving by. Having them on at all times is generally bad design and also increases the chance that the
overcurrent protection is triggered. Apart from that, it goes against the system requirements.

14

7 Machine Design

7.1 Cam Plate

For the extraction mechanism, a first consideration was having a belt move the discs from the tube. To test
this a quick prototype was made and powered using a simple PWM program. This program is also mentioned
in the software implementation. The results of this prototype were that the belt had too much leeway, and
because of that, it jammed when extracting discs from the tube due to the inconsistency. Therefore this idea
was discarded. After this three ideas were left:
Firstly, using a sort of claw, this idea was very crude and since the whole idea was too variable and compli-
cated it was also discarded.
Secondly, we thought of using a fork to extract the discs. This idea was more or less constructed in our first
prototype and from the results of testing it was concluded that the fork left too little space to put sensors.
Lastly, using a cam plate to extract the discs. The cam plate is an egg shaped part that rotates to push
discs out of the tube. Ultimately this idea was chosen, because it would leave more room for sensors, and it
would require only one limit switch to detect and limit its movement.

Since everything in the machine needed to be more spaced apart, a new design for ejection was required.
According to the machine specification this part should be able to eject discs from the initial tube. As for
the design of this part, a cam plate was chosen already, which will be powered by a motor. Since there is no
direct way to power the cam plate, it needs to be attached to an axle with a gear attached to it. The motor
can then power this gear and through that the cam plate.
It is also designed so that the machine can detect whether the cam plate is moving or not with a limit switch.
This limit switch is spaced the ideal distance so that it only triggers once every rotation of the cam plate.
In this part of the machine the position of the tubes that contain the discs also needs to be determined.
These two tubes need to be positioned so that they can possibly hold all the discs that we have at once.
Below these two tubes there is a horizontal platform on which the discs will fall before the cam plate pushes
them on the conveyor belt. Lastly, this part of the machine has to be able to detect if there are any discs
left. This is also a requirement in the machine specification. To check this we will use a lamp and a light
sensor.

7.2 Conveyor Belt

As mentioned in the section on Prototype 1 and the machine specification, the discs should cover some
ground in order for the machine to have space for our sensors. For this, the possibility of using a conveyor
belt, a fork, a claw and slopes were all considered and analysed. The problem with using a fork would be
that one side of the path of the disc would be occupied by the fork, making it hard to place a sensor to see if
discs are passing certain points. A claw was, as already mentioned earlier, really impractical since it was way
too complicated, using too many motors and making error detection hard. A slope was also a possibility, but
the results from our first prototype concluded that the machine is going to require a lot of FischerTechnik
parts, so using this idea would deplete the supply too much. A belt would work fine, since it leaves plenty
of room for other components (left, right and top) and is fairly reliable and doable, although it might not
be as fast as some other systems. This design had the most advantages and the least disadvantages, so it
was decided to go for the conveyor belt.

The sketch below indicates how the design was started. In this design a triangular shaped conveyor belt was
used and the motor that powered the belt was inside this triangular shape. This design was not the design
that was going to be implemented, because of two main reasons.
First of all, this implementation of the conveyor belt took too many building blocks of the FischerTechnik
set. This is a problem because these blocks are needed for the other parts of the machine.
Secondly, the machine was not sturdy enough. Even though it was really easy to adjust every time on the
spot, it is not handy to fix it after storing it away.

15

In this design two sensors were used instead of one, since the machine needs to detect if there are discs
passing by and what colour they are. One sensor was used to detect discs passing by and one sensor to
detect the colour of said disc.
In the next version of the transport belt the issue with the sturdiness was fixed and the conveyor belt design
switched to a linear conveyor belt instead of the triangular one. One of the sensors was also removed (and
one of the lamps) and the colour detecting sensor was left in place. The location of this sensor also changed
from looking down on the conveyor belt to being at the side of the belt, looking at a red plate. This red
plate was chosen so we can distinguish between a black, white and no disc. In the machine implementation
there is a more elaborate explanation about this sensor.
The last thing that is mentioned in the machine specification about the conveyor belt, is that the machine
needs to be able to detect if the motor is faulty. To make sure this can be possible the machine needs to
make use of a limit switch that gets triggered if the belt is moving.

Figure 6: First design of the conveyor belt

7.3 Containers

The last mechanism of the machine is the part that actually sorts the discs. As mentioned already in the
previous part, it does not have to detect whether it is are dealing with a black or white disc, since this is
already checked in the previous part; everything that has to be done in this part is to divide the discs to
different sections depending on the colour.
Various options regarding this were considered. Firstly, a wall that is able to move to either the left, in case
of a white disc, or to the right, in case of a black disc. This wall then forces the movement of the disc and
guides them to the appropriate container. Secondly, we considered using a second conveyor belt that moves
to either side depending on the colour of the disc that falls on it. And thirdly, we have thought of containers
that are able to move horizontally to the correct position with the aid of a motor. This last design was
eventually chosen, because it seemed interesting and it could work without much issue, while not influencing
the time it takes to sort.
Using this design, the discs immediately fall from the conveyor belt into the right container, because as soon
as the colour is known the containers start moving in the necessary direction until the relevant limit switch
is pressed.

We first designed the sorting mechanism as you can see in the picture below. As you can see, this de-
sign consisted of a very simple system. The boxes were simply attached to a gear rack and to each other.

16

The gear rack is then simply powered by a motor, which is attached to the PP2.

Figure 7: First design our sorting containers

The design did not really work out as the movement of the sorting containers was only restricted by
physical FischerTechnik blocks placed on the board. This resulted in the machine getting stuck more often
than wanted, and also made the motor work harder as there was friction between the surface of the board
and the sorting containers to worry about.

After this a new design was being worked on, since the last one had a couple of flaws. The result can
be read about in the machine implementation.

17

8 Software Design

To completely and accurately specify how the software should function for this machine, an automaton has
been designed in UPPAAL. It is worth noting that this was not yet the final version.

Figure 8: the second UPPAAL model

At the start of this program, the boxes should be in the correct position, such that when the boxes do not
get moved the black discs fall into the right one. Then the machine waits for the start button to be pressed.
Once it gets pressed, the program’s main loop is entered: first, it has to check if there are discs left (see the
subsection ”Last disc”). Next, it has to eject the disc and wait for the relevant limit switch to get released

18

and pressed again; if this takes too long an error must have occurred. Once the disc has been ejected the
conveyor belt starts moving, checking whether it passes the first pass sensor in time. Since a digital light
sensor has been used in this design, it will either detect a white disc and move the containers accordingly,
or detect the disc with the last pass sensor. In the latter case it was a black disc and landed in the right
container and the loop can be started all over again.
In the other case, the containers will be moved until they touch the relevant limit switch to make sure white
discs land in the other container. The boxes stay stationary until the last pass sensor has noticed the disc,
after which they move back to their starting position and we go through the loop once more.

Later, the two ”pass-sensors” have been removed and replaced with a more advanced analogue sensor.
This led to the UPPAAL model below, in which error detection has been added too.

Figure 9: the third UPPAAL model

8.1 Last disc

To detect that the final disc has been ejected and to stop trying to sort any more discs, the cam plate
subsystem has a sensor that can detect whether there are still discs left. This sensor is not able to detect the
bottommost disc, but it can see whether there is a disc present above the bottommost disc. Therefore, once
it does not detect a second last disc, it knows to run the sorting procedure one more time. To accomplish
the above-mentioned, a variable is stored for whether or not the machine is in the last round of sorting.
This way, the program will still run one more time if it does not detect a disc with the sensor, but quit after
sorting this last disc.

19

8.2 Emergency button

The first plan for the emergency button was to add the code to handle it to the same interrupt as the Pulse-
Width Modulation. It would check the emergency button for a press and then move into an emergency state
to wait for the start button. Getting this to work would save us a lot of effort and keep our code more
simple and clean. Sadly, simple testing showed that staying in the timer interrupt for extended amounts of
time would disconnect the PP2 from the computer. This is not a huge problem in itself, but it also does not
allow specifying where it returns to when the emergency has been taken care of.

For this reason, using a subroutine instead has been settled upon. It needs to be called in every state
to make sure the machine can always be stopped, which leads to some slightly longer code, as expected.
Having it as a subroutine is, on the other hand, shorter than having the code there directly and also gives
an easy way to add more code to always execute and to modify the emergency button’s code. From here it
is possible to branch to any state without much issue, provided that the position RTS would have sent us
to is pulled from the stack. This is necessary because for any BRS instruction an RTS is expected, but the
behaviour can be mimicked by pulling the line number from the stack. If this is not done repeatedly using
the emergency button would fill up the stack and function as a memory leak.

8.3 Error detection

In order to be able to detect most errors, a way is needed to check if too much time has passed and the next
sensor has not detected something yet. In order to detect if sufficient time has passed, a counter has been
created. Every time the timer interrupt runs, it updates this counter. Then this counter is used in various
states in our program in order to detect if a motor or disc is taking too long to finish its current business
and therefore it can be known when there is something wrong, so the machine can go to an error state.

20

9 Machine Implementation

Although the design and specifications of the second prototype was ready, the actual making of the machine
proved to be rather challenging. A number of issues arose on all 3 of the parts mentioned in the Machine
Specification. The subsequent subsections contain explanations on why and how the implementation of these
parts was difficult.

9.1 Cam Plate

In this section the first part of the machine is discussed, namely the cam plate. Before the final implemen-
tation of this part it will have been numerous times. The first time of building it, the focus was on having it
actually build to test if this was the best option. It was not sturdy at all and lacked some compactness (not
that this was necessary). After testing it with the code written for it, it resulted in the expected behaviour,
and that this was indeed the best approach for the first part of our machine. The part was then changed
a bit to improve the sturdiness and make it more compact. The second time, a sensor was added to detect
whether or not the machine was finished. This was not really as sturdy as necessary, but it contained every
function which was expected from the machine. The next time the whole subsystem was rebuilt, compactness
and sturdiness where key points. This part, together with the conveyor belt, is in a vertically higher position
since the discs need to fall in the containers at the end. Therefore the whole construction needed to not only
be sturdy and compact, but also balanced. The finished implementation of this can be seen in the following
picture.

Figure 10: The cam plate

21

After this only very small changes were made. The metal axle was swapped with a smaller one, since the
longer axle was needed for the containers.
The last thing that is mentioned in the machine design is the use of sensors to detect discs in the tube. For
this the sensor and lamp were placed on opposite sides of the tube so the light of the lamp shines through
the tube and either against a disc or through the air in the tube (in case of no disc) and finally hits the
sensor.

9.2 Conveyor Belt

The implementation of the conveyor belt has been a process of building it and breaking it down again or
changing it a lot. As already covered in the machine design of the conveyor belt, first the belt was mounted
in the form of a triangle. This caused issues with placing the motor in between it. A lot of extra parts where
used around the conveyor belt since we had to support the motor in that position.
The motor is rotating a gear on an axle that was connected to one of the gears, and that was in turn attached
to the conveyor belt. As specified in the machine specification of the conveyor belt, we want to know if the
motor of the belt works or not. In machine design it is stated that a limit switch is going to be used for
this. A flat disc that has one half extending further out than the other half, called an ”index cam” by the
Fischertechnik guide, is attached to the axle. This index cam presses against the limit switch to detect the
movement of the conveyor belt. To save space and parts this construction is put on the side of the conveyor
belt opposite to where the motor is.

9.3 Sensors

To allow for more error detection, the sensor which we use to determine the colour of the discs was connected
to an analogue input. By using a simple program which prints the analogue sensor’s input values on the
display, it was found that white discs give a value below 100, the black discs give a value between 100 and
180, and if there is no disc at all it gives a value above 180.
The advantage of using the analogue values is that the machine could now also detect when a black disc
has passed the sensor, in contrast to an earlier prototype where the machine could not distinguish between
a black disc or no disc at all. Some additional tests were conducted regarding the situation when the cable
would be plugged in wrongly. If the cable is disconnected from the PP2, the input is a value of 3 or 4. If
the cable is plugged in the other way around on the PP2, the input is 0. If the sensor is completely blocked,
its polarity is reversed, or the cable is disconnected from the sensor, the input is 255. These values are then
used to detect these situations and let the machine go to an error state.
After implementing this, another problem occurred: the light values for the black, white and no discs were
fluctuating a little, and were dependent on belt speed and background lighting. This was solved by moving
the light sensor to the side instead of the top, and placing a dark red plate behind it. The white discs
always had a value of less than 50, and the black ones always had a value over 170. The plate (no disc) was
approximately 100.

9.4 Containers

As mentioned in machine design there are several designs, and from these designs there exists a way so that
the boxes are restricted in their movement, but not too much as this will be detrimental to the operation of
the machine.
The result of this is the following implementation, in which the sorting containers movement is restricted by
two metal rods. As can be seen in the picture below, the sorting containers are attached to and resting on
top of the metal rods. In the first redesign of the sorting container part, blocks were used, which had a too
narrow hole for the rods to go through, but this was easily resolved by using blocks with a wider opening.
The motor still moves the boxes through the use of a gear on a gear rack mounted on the side.

22

Figure 11: Final implementation of the boxes

9.5 Overcurrent protection

There was trouble with the overcurrent protection; it triggered with only two lamps and one motor connected
to the same group. In response to that, a few tests were conducted using a multimeter. From these test it was
found that the voltage drop over the lamps was 7V and that the current draw was 130 mA, when connected
to an 11V output using the 33 ohm resistor. With the circuit below (in which the resistors represent the
lamps) it was possible to connect all four lamps to one output of our PP2, with a total current draw of a
little over 200mA.
Using this method of connecting the lamps, there was no longer any need to use wires with 33 ohm resistors
in them, saving some power. There were only two disadvantages: when one lamp was connected wrongly or
broke down, two lamps would get turned off and if the connector to the output would be disconnected, all
four lamps would get turned off.
The final product does not use this method, since the current draw was too high on a single output. Instead, it
was decided to avoid unnecessary activation of lights and reduce the amount of lamps and light sensors. This
method has been useful for testing one of the first versions of the code, because one could simply connect this
to the always on 12V port instead of one of the output ports, completely avoiding the overcurrent protection
altogether.

23

Figure 12: Schematic of our lamps

24

10 Software Implementation

10.1 Walk through

From the Software Specification it should be clear what it is the PP2 should do. Software Design explained
how the code to be was envisioned and how UPPAAL was used to designed it. Next up is a walk through of
the final implementation of the software based on those two sections; what each subroutine does and under
which circumstances each is called.

First of all, the pulse-Width modulating part of the code. This is a part that is constantly running and has
a simple function, namely to provide PWM to the motors so they do not burn down.
The general idea behind the PWM part of the code is that whenever a timer-interrupt happens the necessary
outputs get turned on in the high state. The next time the interrupt comes it will enter the low state, setting
the corresponding outputs and doing the corresponding calculations.

The code for the timer interrupt is shown below. The first thing it does is increase the step counter.
It is necessary to manually keep track of the time because the interrupt already uses the physical timer.
This works and is still reliable since the timer interrupt gets called exactly twice per 100 timer steps.
Next, it checks if the emergency button is pressed. That is done here and now, because this part of the code
is run very often. This makes the emergency button press independent of the state the machine is in at the
time of running this code, which is very useful.
The last thing this piece of code does is load the values of the AD-converter, format it to the correct value
and store it again so it can easily be used elsewhere in the code. This makes the use of this value less
confusing and keeps the rest of the code cleaner. The code is then redirected to either the high state or the
low state, both mentioned earlier in the walk through.

timerinterrupt :
LOAD R0 [GB+COUNTER] ; I n c r ea s e the step counter
ADD R0 1
STOR R0 [GB+COUNTER]

LOAD R0 [R5+INPUT]
AND R0 EMERGENCY ; Check whether the emergency button i s pre s sed
STOR R0 [GB+EMERGENCY]

LOAD R0 [R5+ADCONVS] ; Load the AD−conver t e r and s t o r e i t s va lue in the memory
AND R0 COLORDISK
STOR R0 [GB+SENSORANAL]
LOAD R0 [GB+PWMSTATE]
BEQ highstate ; PWMSTATE of 1 w i l l go to lowsta te and 0 w i l l go to ←↩

h igh s ta t e

The code in the high state is very simple. The first thing it does is load the INTENSITY from memory,
which is a value with a scale of 0 to 100 determining how long the pulse should be. That value is then simply
added to the timer, since every low and high state together is 100 timer steps. Next, the code stores 1 in
PWMSTATE, so the machine will go to the low state the next time the interrupt goes off. Before closing
off, the outputs defined elsewhere in the code are turned on. Lastly, the interrupt register gets reset and the
code returns from the interrupt.

highstate :
LOAD R0 [GB+INTENSITY] ; load i n i t i a l time o f the PWM
STOR R0 [R5+TIMER]
LOAD R0 1
STOR R0 [GB+PWMSTATE]
LOAD R0 [GB+ACTIVE] ; load a c t i v e por t s
OR R0 [GB+PERMANENT]
STOR R0 [R5+OUTPUT] ; a c t i v e loaded por t s
SETI NUMTIM

25

RTE

The code for the low state is largely the same. There are only two differences; one is that it sets the
PWMSTATE to 0, to make sure the machine goes to the high state next time. Another difference is that
the amount added to the timer is the difference of the total - highstate = lowstate, where total is the total
time spent in the high state of the interrupt plus the low state of the interrupt.

lowstate :
LOAD R0 DELTATIME ; load remaining time o f our PWM
SUB R0 [GB+INTENSITY]
STOR R0 [R5+TIMER] ; bump timer by DELTATIME
LOAD R0 0 ;
STOR R0 [GB+PWMSTATE] ; s e t v a r i ab l e so that i t changes PWMstate
LOAD R0 [GB+PERMANENT]
STOR R0 [R5+OUTPUT]
SETI NUMTIM
RTE

Next up are two other pieces of code which can be used and seen as independent of the machine, while
still having a very important role.
The first one of these is the emergency subroutine. The subroutine starts with immediately stopping all
motors and lamps as per the System Level Requirements. Next it loads the ERRORSTATE, converts it to
seven segment display using a subroutine that will be explained later, and outputs it on the display. Once
the start button is pressed everything should be resolved, so the program pulls the line number put on the
stack by BRS and returns to the start state. As long as the start button has not been pressed this script
will keep running.

emergstate :
LOAD R0 0
STOR R0 [GB+ACTIVE] ; when in emergency mode everyth ing i s o f f
STOR R0 [GB+PERMANENT]
STOR R0 [R5+OUTPUT]

LOAD R0 [GB+ERRORSTATE]
BRS Hex7Seg ; t r a n s l a t e (value in) R0 in to a d i sp l ay pattern
STOR R1 [R5+DSPSEG] ; and p lace t h i s in the Display Element
LOAD R1 %01000 ; R1 := the b i tpa t t e rn i d e n t i f y i n g Dig i t 3
STOR R1 [R5+DSPDIG] ; a c t i v a t e Display Element n r . 3

LOAD R0 [R5+INPUT]
AND R0 STARTBUTTON
BEQ emergstate

PULL R0 ; to f i x the wrong stack po in t e r
BRA startstate

As seen above, the second separate subroutine to be looked at is Hex7Seg. This routine fills R1 with the
seven-segment value of R0.
DISCLAIMER: This part, and this part alone, has been provided by the Technical University of Eind-
hoven. It is listed for the sake of completion.

Hex7Seg :
BRS Hex7Seg_bgn ; push address (tb l) onto stack and proceed at ”bgn”

Hex7Seg_tbl :
CONS %01111110 ; 7−segment pattern f o r '0 '
CONS %00110000 ; 7−segment pattern f o r '1 '
CONS %01101101 ; 7−segment pattern f o r '2 '
CONS %01111001 ; 7−segment pattern f o r '3 '
CONS %00110011 ; 7−segment pattern f o r '4 '
CONS %01011011 ; 7−segment pattern f o r '5 '
CONS %01011111 ; 7−segment pattern f o r '6 '
CONS %01110000 ; 7−segment pattern f o r '7 '
CONS %01111111 ; 7−segment pattern f o r '8 '

26

CONS %01111011 ; 7−segment pattern f o r '9 '
CONS %01110111 ; 7−segment pattern f o r 'A '
CONS %00011111 ; 7−segment pattern f o r 'b '
CONS %01001110 ; 7−segment pattern f o r 'C '
CONS %00111101 ; 7−segment pattern f o r 'd '
CONS %01001111 ; 7−segment pattern f o r 'E '
CONS %01000111 ; 7−segment pattern f o r 'F '

Hex7Seg_bgn :
MOD R0 16
LOAD R1 [SP++] ; R1 := address (tb l) (r e t r i e v e from stack)
LOAD R1 [R1+R0] ; R1 := tb l [R0]
RTS

Now that the core of the program has been covered, the rest of the code is next, represented by the
UPPAAL model below. (Figure 11) This part will use the model instead of the actual code to show what
the code is meant to achieve without having to go into the details.

The automaton starts in the initial state, marked with the text init0 in the bottom-right. Here the machine
gets ready for operation. It loads certain values in memory and installs the timer interrupt routine.
Then it goes to the first state, which needs manual intervention. This is the startstate, in which the machine
simply waits for the user to press the start button, as described in the project guide.
The next state is the checkstart. This state simply checks if there is a disc in the tube. If there is no disc in
the tube the program runs one more time, because that means that last loaded disc still needs to be sorted,
else it goes to the disconbelt.
Now in disconbelt, the machine operates the cam plate while detecting for possible errors. This is described
in the machine design and implementation.
The next state, disccolor, is responsible for detecting the colour of the discs. It is also responsible for de-
tecting the motor errors, since the disc would not reach the sensor if the motor does not work.
discwhite and discblack are the different states disccolour points to if the discs are white and black respec-
tively. In these states the sorting containers are moved horizontally as described in machine design.
These two states lead to the last state discdone, where the machine has the containers in the correct place.
Here the machine just waits until the disc on the belt actually dropped down in the box. When the disc is
sorted, the machine goes back to checkstart.
This is the procedure the machine follows. The machine keeps working until the condition in checkstart is
met.

27

Figure 13: UPPAAL model of the code

10.2 Branch problem

There was a weird problem, in which upon adding a certain amount of code, even code like ”ADD R0 0”,
the debugger would give error 33. This error means that the stack has overflown. The step by step function
of the debugger made clear that for some reason there was a difference between the hexadecimal file and the
code we saw in the debugger. The debugger always branched one line above the one where it should, causing
it to enter a branch loop, which in turn causes the stack to overflow. This can be seen in the two pictures
below, the left side is the debugger, and the right side is the hex file, with the two lines executed in the loop
marked with ”—–”.

Figure 14: Part of the code with a wrong branch statement

28

Figure 15: Part of the code which was branched too wrongly

As can be seen in the top picture, ”BRS checkemerg” got converted to ”BRS 14f”. Line 14f, however,
corresponds to ”BRA disconbelt” instead of the checkemerg label. For some reason, the debugger branches
one line too high. The initial conclusion was that it was caused by the debugger, but after looking at the
hexadecimal file more closely, it became clear that the hexadecimal code did not correspond to the comments
next to it. Adding the meaningless instruction ”ADD R0 0” above every label worked as a workaround, but
those instructions also made the code a lot less clear and clean. This prompted us to look at the hexadecimal
codes in the .hex file, which revealed more about the underlying problem: almost all branch instructions had
the wrong amount of displacement. The last two hexadecimal characters should be the difference between
the line numbers of the branch and the label to branch to, minus one. As it turns out this value is one less
than it should be for some of the branches. Adding one to the displacement in the .hex file fixed the issue,
confirming this theory. This means the issue had to be in Assembler9.jar.

After some digging, it became clear what the actual issue was, why it occurred and how to avoid it: the
first instruction (which sets the timer interrupt to the right label) needed a long form instruction (because
the displacement from the label did not fit in eight bits). Long form instructions take up two lines of code
in the resulting .hex file and for some reason the Assembler did not account for this correctly, even though
it seems to handle it correctly in other parts of the code. In order to find out more, we created a simple
program with a lot of meaningless instructions to take up space, and force long form instructions. As it turns
out, the assembler only handles long form instructions with labels incorrectly if they are LOAD instructions.
This error occurred in the program because its first line read ”LOAD R0 timerinterrupt”, referring to the
”timerinterrupt” label at the end of the code. An easy way to avoid this is to make sure the timer interrupt
is not too far down into the program, so the instruction only takes up one word. This also explains why
adding a single meaningless instruction could make or break the code, as that changes the displacement and
can make it no longer fit in eight bits.

29

11 Testing

The following section gives an overview of all the tests conducted on the machine and its parts. As suggested
by the Study Guide, the box was checked to make sure all FischerTechnik parts were present before doing
any tests. To avoid confusion beforehand, following are some definitions: with ’component’ the individual
FischerTechnik parts are meant that interact with the PP2, for example, motors, lights and sensors. With
’unit’, however, the subsystems of the machine are meant. These have been mentioned already in the machine
specification and include the cam plate, conveyor belt and sorting containers.

11.1 Component Tests

The component tests were started with a simple Pulse-Width Modulation script. This script is extensively
explained in the Software Implementation. The version used here is the same as the one used to test the first
prototype and mimicked the input to the outputs. The only thing that needed to be tested for the PWM
was the percentage width of the pulse.
According to the Technical Guide from this project we know that the motors can take a maximum of 9 volts.
We also know from the Guide on the PP2 that the outputs of the processor supply 11 volts. Therefore the
width of the pulse in our PWM program should be 9

11 · 100% ≈ 82%. This way the motors can be safely
tested without the risk of damaging them.
In this phase all the lamps and limit switches have been tested. This is pretty straight forward as the lamps
and limit switches work without any configuring and are thus easily tested. Just attaching them to the
output with use of a cable with a resistor suffices.
Next, the light-dependent resistor has been tested. The digital input was very straight forward, like the limit
switches. The analogue input, however, required a bit more work. The PWM program was modified to also
display the value of the analogue input on the display. This analogue sensor was then tested by using a light
close up to the sensor and also turning the lights in the room on and off to check if the values it returned
were sufficiently accurate.
All this testing was done on the PP2 and it behaved as expected, so the PP2 has also been tested for the
options needed.

11.2 Unit Test

Next on the V-model there is the Unit Test, where the different units are tested. The three main units of the
sorting machine, as written about in previous parts of the V-model, are the cam plate, the conveyor belt,
and the sorting containers.
To test the disc extraction system, or cam plate, a simple script was made which ejects one disc when a
button is pushed. This script was based on the PWM program and had a small extension to incorporate
aforementioned behaviour.
To test the conveyor belt, it is disconnected from the motors and then moved by hand to assess the friction
it creates. If the conveyor belt does not move with little force, then check why the belt does not move as
desired. Repeat this while the belt is not nearly frictionless. After this the belt is reconnected to the motor
and the PWM program is run on the conveyor belt. Now the belt is easily inspected visually and if the belt
moves at a steady pace, it is working as expected.
Lastly, the sorting containers were tested. The same procedure is used as for the conveyor belt; the only
difference is that a special version of the test program is used that can move the boxes in two directions.

11.3 System Test

The UPPAAL model was used to run multiple system tests, for which the simulator in UPPAAL has been
used. The machine has been simulated by clicking on the enabled transitions which correspond to a sensor,
button or the timer. It has also been checked if all states in the model could be reached, which was indeed
possible. After this, multiple scenarios were checked:

30

1. Normal operation of the machine with one disc: functioned properly.

2. Normal operation of the machine with 5 discs, white, white, black, white, black: functioned properly.

3. Operation of the machine with no discs inserted: machine would try to extract a disc and it would
give the error that a disc is stuck.

4. Operation of the machine with a faulty motor for the disc extraction mechanism: the machine would
give the error that the motor for the disc extraction mechanism is malfunctioning.

5. Operation of the machine with a fault limit switch for the disc extraction mechanism: the machine
would give the error that the limit switch for the disc extraction mechanism is malfunctioning.

6. Operation of the machine with a faulty motor for the belt: the machine would give the error that the
belt is malfunctioning.

7. Operation of the machine with a faulty limit switch for the belt: the machine would function properly
and not notice the problem.

8. Operation of the machine where the disc gets stuck between the extraction and colour sensing mecha-
nism: the machine would give the error that the disc is stuck.

9. Operation of the machine with a faulty motor for the sorting boxes: the machine functions properly
when the boxes are already in the right place, so it does not have to move the boxes. It gives the error
that the motor for the boxes is malfunctioning when it has to move the boxes.

10. Operation of the machine with a motor for the sorting boxes which has it’s polarity reversed: the
machine gives the error that the polarity of the sorting boxes is reversed.

11. Operation of the machine with a faulty lamp or sensor for the mechanism which checks if the machine
is finished sorting: the machine keeps on going and gives the error that a disc is stuck.

12. Operation of the machine with a colour sensor stuck on white: the machine sorts as if there is a white
disc.

13. Operation of the machine with a colour sensor stuck on black: the machine sorts as if there is a black
disc.

14. Operation of the machine with a colour sensor stuck on no discs: the machine would give the error
that a disc is stuck.

15. Operation of the machine with the left limit switch for the sorting boxes malfunctioning: the machine
gives an error that the left limit switch is malfunctioning.

16. Operation of the machine with the right limit switch for the sorting boxes malfunctioning: the machine
gives an error that the right limit switch is malfunctioning.

11.4 Validation Tests

For validation tests, the most important measurements are those made to assess the speed of the machine
and calculate the standard deviation. To do this, the machine was loaded with 10 discs in an order that
would bring about either the best or the worst case scenario. For the best case the machine was loaded with
5 white discs, and then with 5 black discs. This means that the least amount of movement is needed, and
this is thus the best case. The test was performed 5 times as can be seen in the results in Table 1. It must be
noted that out off the 50 total discs sorted all of them were sorted correctly. This is also a good indication
of the reliability of the product.

31

Test no. 1 2 3 4 5
Time in s. 20.76 20.82 20.89 21.17 20.54

Table 1: The 5 best case results

This results in an average of 20.836 seconds with a standard deviation of 0.2281.

The worst case scenario is tested in the same way, but now the discs are placed in an alternating order
with regards to the colour. Once again 10 discs were used each time and tested 5 times. The result can be
seen in Table 2.

Test no. 1 2 3 4 5
Time in s. 22.83 23.69 23.41 s 23.49 22.76

Table 2: The 5 worst case results

This results in an average of 23.236 seconds with a standard deviation of 0.41603.

Now, as can been seen, the machine does perform slightly worse in the worst case scenario, but the dif-
ference in performance is only 10.3%.

After the speed measurements, the machine was tested with regard to the light sensors and how they
function in different ambient lighting conditions. As mentioned in the component test, the values for the
analogue sensor can differ based on these light conditions. Therefore, the machine in its completeness un-
derwent multiple tests with the lights on and off to make sure the chosen thresholds would always work.
The test results showed that the machine continues to work both in complete darkness and full light without
changing the threshold values and thus passed these tests flawlessly.

Objects that were not supposed to be there were also inserted in the machine. In these cases the ma-
chine gave the correct error code.

32

12 Conclusion

During this quartile, we as a group have learned a lot about working as a group. We have put lots of time
and effort in this project. Almost every week we sat together for the full length of our meetings to work and
check each other’s work. We practised skills needed for working in a group of people with different opinions.
Some times we needed to just make a decision because we could not agree with each other. We all have
gained useful knowledge and motivated each other.
Furthermore, we learned a lot of general project planning and documentation skills: on holding useful
meetings, maintaining minutes on these meetings, planning out these meetings and projects with help from
design processes such as the V-model, writing documentation with utilising minutes and looking at the
(Belbin) roles people assume in a project.

33

13 Literature Overview

(1.) Dr. Meredith Belbin, Belbin Team Roles, Belbin, 2017,
http://www.belbin.com/about/belbin-team-roles/

14 Appendix

Included below are the Debug Manual (or Error Manual), the final version of the UPPAAL model, the final
version of the source code and a debug program min max brightness. After that you can also find the
logbook.

14.1 Error Manual or Debug Manual

i

Debug manual

Below follow all error identifiers with their respective issue descriptions and
explanation how to resolve the issue. These identifiers are visible on the segment
display of the PP2 processor. The identifiers for the errors are displayed on the third
display. However, keep in mind that the identifiers for states are visible on the first
display. Furthermore, we define the right side of the machine when looking from the
container part towards the cam plate. The left side is trivially the other side.
Whenever we say that a motor is disconnected we imply that the motor can be
physically blocked as there is no difference to the PP2.

Errors
Below you can see a list of detectable errors and what you should do in that specific
error to resolve the issue. Besides that, make sure the conveyer belt is empty, and in
case the last disc has been sorted, remove it before resuming operation. Press the
start button once everything is solved and if there are still discs left to be sorted.

ID Issue Fix

0 The machine is stopped by the
emergency button

Resolve the problem.

1 The motor for the cam plate is not
functioning correctly.

Check the wires of the motor and the
connection on both ends, also check that
there is no disc getting stuck in the tube.

2 The limit switch of the cam plate is
not connected.

Check the wires of this limit switch and the
connection on both ends. Now you have to
get the cam plate in the correct position. This
is easily done by pressing the start button
once.

3 An unidentified object was detected Remove the object from the machine and
press the start button to let the machine
resume action.

4 The motor for the belt is not
connected.

Check the wires of this motor and check the
connection on both ends.

5 The polarity of the motor of the
container part is reversed.

Reverse the polarity of the motor by
switching the red and black wire connection.

6 The motor of the container part is not
connected or the container is blocked

Check the wires of the motor and the
connection on both ends. Also check the
switches on both ends.

7 The limit switch from the container
part on the right side of the machine

Check the wires of this limit switch and the
connection on both ends.

14.2 UPPAAL model

Figure 16: Final UPPAAL model

14.3 Source code

; f i r s t 3 e r r o r s t a t e s are f o r over load
@DATA

ACTIVE DS 1 ; Contains what outputs w i l l be a c t i v e
PERMANENT DS 1 ; Contains what outputs w i l l be a c t i v e permanently
ERRORSTATE DS 1 ; Contains the s t a t e o f the over load
PWMSTATE DS 1 ; Contains the s t a t e o f the cur rent PWM phase
INTENSITY DS 1 ; Contains the i n t e n s i t y o f the l ed s
LASTROUND DS 1 ; I s 0 i f not , e l s e i t i s 1
SENSORANAL DS 1 ; Contains the value o f the analogue por t s
COUNTER DS 1 ; Holds the counter value
CORRUPT DS 1 ;
BELTSTATUS DS 1

@CODE
IOAREA EQU −16 ; address o f the I /O−Area , modulo 2ˆ18
INPUT EQU 7 ; po s i t i o n o f the input buttons (r e l a t i v e to IOAREA)
OUTPUT EQU 11 ; r e l a t i v e po s i t i o n o f the power outputs
DELTATIME EQU 100 ; our time uni t
LEDS EQU 10 ; the 3 LEDs above the 3 s l i d e sw i t ches
DSPDIG EQU 9 ; r e l a t i v e po s i t i o n o f the 7−segment d i sp l ay ' s d i g i t ←↩

s e l e c t o r
DSPSEG EQU 8 ; r e l a t i v e po s i t i o n o f the 7−segment d i sp l ay ' s segments
ADCONVS EQU 6 ; the outputs , concatenated , o f the 2 A/D−conve r t e r s

TIMER EQU 13 ; t imer r e g i s t e r
TMRINT EQU 16 ; p lace o f the t imer i n t e r r up t r e g i s t e r
NUMTIM EQU 8 ; number o f the t imer i n t e r r up t

iii

WAITTIME EQU 1000 ; Amount o f c y c l e s needed to be f o r e updating the d i sp l ay
DISKWAIT EQU 100 ; Amount o f i n t e r r up t s t ep s we wait be f o r e e j e c t i n g a new ←↩

d i s c
WAITLAMP EQU 30 ; Amount o f time needed to turn on the lamp
EJECTWAIT EQU 200 ; Amount o f time we can stay in the d i s c e j e c t s t a t e be f o r e ←↩

we go to an e r r o r s t a t e
BOXWAIT EQU 100
BELTWAIT EQU 300

; The po s i t i o n o f :
STARTBUTTON EQU %01 ; the s t a r t button on the PP2
LIMITDISK EQU %010 ; the l im i t switch po s i t i oned at the cam p la t e
EMERGENCY EQU %01000 ; the emergency button on the PP2
LIMITBELT EQU %010000 ; the l im i t switch attached to the ax l e o f the b e l t
LIMITLEFT EQU %0100000 ; the l im i t switch on the l e f t s i d e as de f ined by the guide
LIMITRIGHT EQU %01000000 ; the l im i t switch on the r i gh t s i d e as de f ined by the guide
SENSORLAST EQU %010000000 ; the senso r which de t e c t s i f the re i s a d i s c l e f t or not

MOTORDISK EQU %01 ; the cam p la t e motor
MOTORBELT EQU %010 ; the motor o f the conveyor b e l t
LAMPLAST EQU %0100 ; the lamp correspond ing with SENSORLAST
MOTORLEFT EQU %010000 ; the s o r t i n g con ta in e r s motor moves to the l e f t
MOTORRIGHT EQU %0100000 ; the s o r t i n g con ta in e r s motor moves to the r i gh t
LAMPCOLOR EQU %010000000 ; the lamp above the b e l t b e s i d e s the analogue photon ←↩

r e s i s t o r

COLORDISK EQU %011111111 ; used f o r conver t ing the ADCONVS value to a usab le value
COLORWHITE EQU 60 ; analogue thre sho ld f o r white /no d i sk
COLORBLACK EQU 170 ; analogue thre sho ld f o r no d i sk / black

init :
LOAD R0 timerinterupt ; r e l a t i v e po s i t i o n o f the rou t ine

ADD R0 R5 ; memory adre s s o f the i n t e r r up t

LOAD R5 IOAREA

LOAD R1 TMRINT ; load i n t e r r up t r e g i s t e r o f t imer
STOR R0 [R1] ; s t o r e the p lace o f r ou t ine in the r e g i s t e r

LOAD R0 DELTATIME
STOR R0 [R5+TIMER] ; i n i t i a l i s e the t imer
LOAD R0 0
STOR R0 [GB+PWMSTATE] ; s e t i n i t i a l PWM−phase to h i gh s t a t e = 0
STOR R0 [GB+ACTIVE] ; s e t i n i t i a l a c t i v e inputs to none
STOR R0 [GB+PERMANENT]
STOR R0 [GB+ERRORSTATE] ; s e t i n i t i a l over load−s t a t e to 0
STOR R0 [GB+LASTROUND]
LOAD R0 80
STOR R0 [GB+INTENSITY]

SETI NUMTIM ; a c t i v a t i n g i n t e r r up t r e g i s t e r

LOAD R2 0
BRS writestatus
BRA startstate

timerinterupt :
LOAD R0 [GB+COUNTER]
ADD R0 1
STOR R0 [GB+COUNTER] ; I n c r ea s e the step counter

LOAD R0 [R5+INPUT]
AND R0 EMERGENCY ; Check whether the emergency button i s pre s sed
STOR R0 [GB+EMERGENCY]

LOAD R0 [R5+ADCONVS] ; s t o r e s e n s i b l e ADCONVS va r i ab l e to use l a t e r
AND R0 COLORDISK
STOR R0 [GB+SENSORANAL]
LOAD R0 [GB+PWMSTATE]
BEQ highstate ; PWMSTATE of 1 w i l l go to lowsta te and 0 w i l l go to ←↩

h igh s ta t e

lowstate :
LOAD R0 DELTATIME ; load remaining time o f our PWM
SUB R0 [GB+INTENSITY]

iv

STOR R0 [R5+TIMER] ; bump timer by DELTATIME
LOAD R0 0 ;
STOR R0 [GB+PWMSTATE] ; s e t v a r i ab l e so that i t changes PWMstate
LOAD R0 [GB+PERMANENT]
STOR R0 [R5+OUTPUT]
SETI NUMTIM
RTE

highstate :
LOAD R0 [GB+INTENSITY] ; load i n i t i a l time o f the PWM
STOR R0 [R5+TIMER]
LOAD R0 1
STOR R0 [GB+PWMSTATE]
LOAD R0 [GB+ACTIVE] ; load a c t i v e por t s
OR R0 [GB+PERMANENT]
STOR R0 [R5+OUTPUT] ; a c t i v e loaded por t s
SETI NUMTIM
RTE

startstate :
BRS checkemerg ; check wheter the emergency button i s pre s sed

LOAD R0 0 ; s t a r t with lamps o f f
STOR R0 [GB+PERMANENT]
LOAD R0 [R5+INPUT]
AND R0 STARTBUTTON ; whi l e the s t a r t button i s not pre s sed stay in t h i s s t a t e
BEQ startstate

LOAD R0 0
STOR R0 [GB+LASTROUND] ; r e s e t the LASTROUND va r i ab l e
LOAD R2 1
BRS writestatus ; d i sp l ay the s t a t e

LOAD R0 0
STOR R0 [GB+COUNTER] ; r e s e t the counter
LOAD R0 LAMPLAST ; turn LAMPLAST on
STOR R0 [GB+PERMANENT]

checkstart :
BRS checkemerg ; check wheter the emergency button i s pre s sed

LOAD R0 [GB+COUNTER] ; g ive the lamp a b i t to s ta r t , s i n c e i t i s not i n s t an t l y on
CMP R0 WAITLAMP
BMI checkstart

LOAD R0 [GB+LASTROUND] ; go to s t a r t s t a t e i f we are done s o r t i n g
BNE startstate
LOAD R0 [R5+INPUT]
AND R0 SENSORLAST ; i f t h i s i s the l a s t round sa id v a r i a b l e s acco rd ing ly
BNE addone

LOAD R0 0
STOR R0 [GB+COUNTER] ; r e s e t the counter

diskonbelt :
BRS checkemerg ; check wheter the emergency button i s pre s sed

LOAD R0 LAMPCOLOR ; make sure to a l s o turn the checking lamp on
STOR R0 [GB+PERMANENT]
LOAD R0 MOTORDISK ; s t a r t the motor f o r the camplate
STOR R0 [GB+ACTIVE]

LOAD R0 [GB+COUNTER]
CMP R0 EJECTWAIT
BPL countertozero_cam ; We know something i s wrong with e i t h e r the cam p la t e or ←↩

the l im i t switch t h e r e .

LOAD R0 [R5+INPUT]
AND R0 LIMITDISK ; Keep going whi le the l im i t switch i s not pre s sed
BEQ diskonbelt

LOAD R2 2
BRS writestatus ; d i sp l ay the s t a t e
LOAD R0 0
STOR R0 [GB+COUNTER] ; r e s e t the counter

diskcolor :

v

BRS checkemerg ; check wheter the emergency button i s pre s sed

LOAD R0 MOTORBELT ; enable the motor o f the conveyor b e l t
STOR R0 [GB+ACTIVE]

LOAD R0 [GB+SENSORANAL]
CMP R0 COLORWHITE
BMI countertozero_white ; Sensor lower then 100 , so d i sk i s white

LOAD R0 [GB+SENSORANAL]
CMP R0 COLORBLACK
BPL countertozero_black ; Sensor between 100 and 180 , the re i s a d i sk but we don ' t ←↩

know which one
; i f d i sk i s white , we f i nd out e a r l i e r , e l s e go on with ←↩

black

LOAD R0 [GB+COUNTER]
CMP R0 BELTWAIT ; i f the d i sk does not reach the senso r in time go to ←↩

b e l t e r r o r
BPL countertozero_belt

BRA diskcolor

countertozero_black :
LOAD R0 0
STOR R0 [GB+COUNTER] ; r e s e t the counter

diskblack :
BRS checkemerg ; check wheter the emergency button i s pre s sed

LOAD R2 3
BRS writestatus ; d i sp l ay the s t a t e

LOAD R0 [GB+COUNTER] ; i f the box does not get to the r i gh t in time
CMP R0 BELTWAIT ; go to boxb lacker ro r
BPL boxblackerror

LOAD R0 MOTORRIGHT
OR R0 MOTORBELT ; enable the motor f o r the b e l t and move boxes to the r i gh t
STOR R0 [GB+ACTIVE]
LOAD R0 [R5+INPUT]
AND R0 LIMITRIGHT ; whi l e the boxes are not in p lace repeat t h i s subrout ine
BEQ diskblack

LOAD R2 5
BRS writestatus ; d i sp l ay the s t a t e
LOAD R0 0
STOR R0 [GB+COUNTER] ; r e s e t the counter
BRA diskdone

countertozero_white :
LOAD R0 0
STOR R0 [GB+COUNTER] ; r e s e t the counter

diskwhite :
BRS checkemerg ; check wheter the emergency button i s pre s sed

LOAD R2 4
BRS writestatus ; d i sp l ay the s t a t e

LOAD R0 [GB+COUNTER] ; i f the box does not get to the r i gh t in time
CMP R0 BELTWAIT ; go to boxb lacker ro r
BPL boxwhiteerror

LOAD R0 MOTORLEFT
OR R0 MOTORBELT ; enable the motor f o r the b e l t and move boxes to the l e f t
STOR R0 [GB+ACTIVE]
LOAD R0 [R5+INPUT]
AND R0 LIMITLEFT ; whi l e the boxes are not in p lace repeat t h i s subrout ine
BEQ diskwhite

LOAD R2 5
BRS writestatus ; d i sp l ay the s t a t e

LOAD R0 0
STOR R0 [GB+COUNTER] ; r e s e t the counter

diskdone :
BRS checkemerg ; check wheter the emergency button i s pre s sed

vi

LOAD R2 6
BRS writestatus ; d i sp l ay the s t a t e
LOAD R0 MOTORBELT
STOR R0 [GB+ACTIVE]

LOAD R0 [GB+COUNTER]
CMP R0 DISKWAIT ; wait f o r the d i sk to f a l l in the con ta in e r s
BMI diskdone

LOAD R0 LAMPLAST ; l i g h t the lamp
STOR R0 [GB+PERMANENT]

LOAD R0 0 ; stop a l l the motors
STOR R0 [GB+ACTIVE]
STOR R0 [GB+COUNTER] ; r e s e t the counter

BRA checkstart

; Error de t e c t i ng
boxwhiteerror :

LOAD R0 0
STOR R0 [GB+ACTIVE] ; s top the motors
STOR R0 [GB+COUNTER] ; r e s e t the counter
LOAD R0 [R5+INPUT]
AND R0 LIMITRIGHT ; when the con ta in e r s move to the wrong s i d e
BNE boxpolarityright ; check i f the p o l a r i t y i s r eve r s ed

boxwhiteleft :
LOAD R0 MOTORRIGHT
STOR R0 [GB+ACTIVE] ; move the s o r t i n g conta ine r to the r i gh t
LOAD R0 [R5+INPUT]
AND R0 LIMITRIGHT ; i f i t does a r r i v e on the r i gh t then
BNE leftswitchkaduuk ; the l e f t switch does not work c o r r e c t l y
LOAD R0 [GB+COUNTER]
CMP R0 BOXWAIT
BMI boxwhiteleft ; i f the box do NOT a r r i v e on the r i gh t in time then
BRA motorboxkaduuk ; the motor does not work

boxblackerror :
LOAD R0 0
STOR R0 [GB+ACTIVE] ; s top a l l the motors
STOR R0 [GB+COUNTER] ; r e s e t the counter
LOAD R0 [R5+INPUT]
AND R0 LIMITLEFT ; when the con ta in e r s move to the wrong s i d e
BNE boxpolarityleft ; check i f the p o l a r i t y i s r eve r s ed

boxblackright :
LOAD R0 MOTORLEFT
STOR R0 [GB+ACTIVE] ; move the s o r t i n g conta ine r to the l e f t
LOAD R0 [R5+INPUT]
AND R0 LIMITLEFT ; i f i t does a r r i v e on the l e f t then
BNE rightswitchkaduuk ; the r i gh t switch does not work c o r r e c t l y
LOAD R0 [GB+COUNTER]
CMP R0 BOXWAIT
BMI boxblackright ; i f the box do NOT a r r i v e on the l e f t in time then
BRA motorboxkaduuk ; the motor does not work

boxpolarityright : ; here we check to po l a r i t y o f the motor o f the s o r t i n g ←↩
con ta in e r s
LOAD R0 MOTORRIGHT
STOR R0 [GB+ACTIVE] ; move the boxes to the r i gh t
LOAD R0 [R5+INPUT] ; i f the boxes a r r i v e l e f t , the p o l a r i t y i s r eve r s ed
AND R0 LIMITLEFT
BNE boxswitch
LOAD R0 [GB+COUNTER] ; i f the boxes do NOT a r r i v e in time on the l e f t the motor ←↩

does not work
CMP R0 BOXWAIT
BMI boxpolarityright
BRA motorboxkaduuk

boxpolarityleft : ; here we check to po l a r i t y o f the motor o f the s o r t i n g ←↩
con ta in e r s
LOAD R0 MOTORLEFT
STOR R0 [GB+ACTIVE] ; move the boxes to the r i gh t
LOAD R0 [R5+INPUT] ; i f the boxes a r r i v e r ight , the p o l a r i t y i s r eve r s ed
AND R0 LIMITRIGHT
BNE boxswitch
LOAD R0 [GB+COUNTER] ; i f the boxes do NOT a r r i v e in time on the l e f t the motor ←↩

does not work

vii

CMP R0 BOXWAIT
BMI boxpolarityleft
BRA motorboxkaduuk

boxswitch :
LOAD R0 5
STOR R0 [GB+ERRORSTATE]
BRA emergstate

countertozero_cam :
LOAD R0 0
STOR R0 [GB+COUNTER] ; r e s e t the counter

camerror :
BRS checkemerg ; check wheter the emergency button i s pre s sed

LOAD R0 MOTORBELT
STOR R0 [GB+ACTIVE] ; s t a r t the motor f o r the b e l t

LOAD R0 [GB+SENSORANAL]
CMP R0 COLORWHITE
BMI limitdiskerror ; Sensor lower then 100 , so d i sk i s white
CMP R0 COLORBLACK ; i f the d i sk a r r i v e s in time at the lamp
BPL limitdiskerror ; then l im i t switch with the camplate i s not working ←↩

c o r r e c t l y

LOAD R0 [GB+COUNTER]
CMP R0 BELTWAIT ; i f the d i sk does not a r r i v e at the senso r in time
BMI camerror ; then the camplate does not turn

BRA motordiskerror

motordiskerror :
LOAD R0 1 ; The motor f o r the camplate i s not g e t t i ng power
STOR R0 [GB+ERRORSTATE]
BRA emergstate

limitdiskerror :
LOAD R0 2 ; The l im i t sw i t ch by the camplate i s not attached
STOR R0 [GB+ERRORSTATE]
BRA emergstate

countertozero_belt :
LOAD R0 0
STOR R0 [GB+COUNTER] ; r e s e t the counter
LOAD R0 [R5+INPUT]
AND R0 LIMITBELT ; s t o r e the s t a t e o f the index cam
STOR R0 [GB+BELTSTATUS]

belterror :
LOAD R0 [R5+INPUT]
AND R0 LIMITBELT
CMP R0 [GB+BELTSTATUS] ; i f the index cam value changes , then the b e l t i s working
BNE diskhostage ; but the d i s c i s phy s i c a l l y blocked

LOAD R0 [GB+COUNTER]
CMP R0 DISKWAIT ; r epeat t h i s f o r a g iven time
BMI belterror

LOAD R0 4 ; There i s a d i s c stuck on the b e l t
STOR R0 [GB+ERRORSTATE]
BRA emergstate

motorboxkaduuk :
LOAD R0 6 ; The motor f o r the boxes i s not g e t t i ng power
STOR R0 [GB+ERRORSTATE]
BRA emergstate

rightswitchkaduuk :
LOAD R0 7
STOR R0 [GB+ERRORSTATE]
BRA emergstate

leftswitchkaduuk :
LOAD R0 8
STOR R0 [GB+ERRORSTATE]
BRA emergstate

diskhostage :

viii

LOAD R0 3 ; The motor f o r the b e l t i s not g e t t i ng power
STOR R0 [GB+ERRORSTATE]
BRA emergstate

emergtozero :
LOAD R0 0
STOR R0 [GB+ERRORSTATE]

emergstate :
LOAD R0 0
STOR R0 [GB+ACTIVE] ; when in emergency mode everyth ing i s o f f
STOR R0 [GB+PERMANENT]
STOR R0 [R5+OUTPUT]

LOAD R0 [GB+ERRORSTATE]
BRS Hex7Seg ; t r a n s l a t e (value in) R0 in to a d i sp l ay pattern
STOR R1 [R5+DSPSEG] ; and p lace t h i s in the Display Element
LOAD R1 %01000 ; R1 := the b i tpa t t e rn i d e n t i f y i n g Dig i t 0
STOR R1 [R5+DSPDIG] ; a c t i v a t e Display Element n r . 0

LOAD R0 [R5+INPUT]
AND R0 STARTBUTTON
BEQ emergstate

PULL R0 ; to f i x the s h i t we fucked up
BRA startstate

writestatus :
LOAD R0 R2
BRS Hex7Seg ; t r a n s l a t e (value in) R0 in to a d i sp l ay pattern
STOR R1 [R5+DSPSEG] ; and p lace t h i s in the Display Element
LOAD R1 %0100000 ; R1 := the b i tpa t t e rn i d e n t i f y i n g Dig i t 0
STOR R1 [R5+DSPDIG] ; a c t i v a t e Display Element n r . 0
RTS

Hex7Seg :
BRS Hex7Seg_bgn ; push address (tb l) onto stack and proceed at ”bgn”

Hex7Seg_tbl :
CONS %01111110 ; 7−segment pattern f o r '0 '
CONS %00110000 ; 7−segment pattern f o r '1 '
CONS %01101101 ; 7−segment pattern f o r '2 '
CONS %01111001 ; 7−segment pattern f o r '3 '
CONS %00110011 ; 7−segment pattern f o r '4 '
CONS %01011011 ; 7−segment pattern f o r '5 '
CONS %01011111 ; 7−segment pattern f o r '6 '
CONS %01110000 ; 7−segment pattern f o r '7 '
CONS %01111111 ; 7−segment pattern f o r '8 '
CONS %01111011 ; 7−segment pattern f o r '9 '
CONS %01110111 ; 7−segment pattern f o r 'A '
CONS %00011111 ; 7−segment pattern f o r 'b '
CONS %01001110 ; 7−segment pattern f o r 'C '
CONS %00111101 ; 7−segment pattern f o r 'd '
CONS %01001111 ; 7−segment pattern f o r 'E '
CONS %01000111 ; 7−segment pattern f o r 'F '

Hex7Seg_bgn :
MOD R0 16
LOAD R1 [SP++] ; R1 := address (tb l) (r e t r i e v e from stack)
LOAD R1 [R1+R0] ; R1 := tb l [R0]
RTS

addone : ; g e t s c a l l e d i f t h i s i s the l a s t round
LOAD R0 1
STOR R0 [GB+LASTROUND] ; s t o r e the va r i ab l e LASTROUND acco rd ing ly
LOAD R2 0
BRS writestatus ; wr i t e the value to the d i sp l ay
BRA diskonbelt

checkemerg : ; check i f the emergency button i s pre s sed
LOAD R0 [R5+INPUT]
AND R0 EMERGENCY
BNE emergtozero
RTS

@END

ix

14.4 Debug program min max brightness

@DATA
MIN DS 1
MAX DS 1

@CODE

IOAREA EQU −16 ; address o f the I /O−Area , modulo 2ˆ18
INPUT EQU 7 ; r e l a t i v e po s i t i o n o f the input buttons
OUTPUT EQU 11 ; r e l a t i v e po s i t i o n o f the power outputs
DSPDIG EQU 9 ; r e l a t i v e po s i t i o n o f the 7−segment d i sp l ay ' s d i g i t s e l e c t o r
DSPSEG EQU 8 ; r e l a t i v e po s i t i o n o f the 7−segment d i sp l ay ' s segments
ADCONVS EQU 6 ; r e l a t i v e po s i t i o n o f the ADCONVS vo l t (255 = 5 vo l t)
TIMER EQU 13 ; t imer r e g i s t e r (r e l a t i v e to IOAREA)
SECOND EQU 10000 ; The amount o f t imer s t ep s in 1 second

begin :
LOAD R5 IOAREA ; R5 := ” address o f the area with the I /O−r e g i s t e r s ”
LOAD R0 0 ; R0 = 0 ;
STOR R0 [GB+MAX]
LOAD R0 %010000010
STOR R0 [R5+OUTPUT] ; Output l ed s Off to s t a r t with

LOAD R0 255
STOR R0 [GB+MIN]

BRA main ; sk ip subrout ine Dec7Seg

;
; Routine Dec7Seg maps a number in the range [0 . . 9] to i t s hexadecimal
; r ep r e s en t a t i on pattern f o r the 7−segment d i s p l a y .
; R0 : upon entry , conta in s the number
; R1 : upon ex i t , conta in s the r e s u l t i n g pattern
;
Dec7Seg : BRS Dec7Seg_bgn ; push address (t b l) onto stack and proceed at ”bgn”
Dec7Seg_tbl : CONS %01111110 ; 7−segment pattern f o r '0 '

CONS %00110000 ; 7−segment pattern f o r '1 '
CONS %01101101 ; 7−segment pattern f o r '2 '
CONS %01111001 ; 7−segment pattern f o r '3 '
CONS %00110011 ; 7−segment pattern f o r '4 '
CONS %01011011 ; 7−segment pattern f o r '5 '
CONS %01011111 ; 7−segment pattern f o r '6 '
CONS %01110000 ; 7−segment pattern f o r '7 '
CONS %01111111 ; 7−segment pattern f o r '8 '
CONS %01111011 ; 7−segment pattern f o r '9 '

Dec7Seg_bgn : MOD R0 10 ; R0 := R0 MOD 10 , j u s t to be s a f e . . .
LOAD R1 [SP++] ; R1 := address (tb l) (r e t r i e v e from stack)
LOAD R1 [R1+R0] ; R1 := tb l [R0]
RTS

;
; The body o f the main program
;

main :
; Get the value o f potent iometer and d i sp l ay on output l ed s
LOAD R0 [R5+ADCONVS] ; Load the potent iometer
AND R0 %011111111 ; Read only the lower 8 b i t s

LOAD R2 [R5+INPUT]
AND R2 %01
BNE reset

LOAD R3 [GB+MIN]
CMP R3 R0
BLT check_max
STOR R0 [GB+MIN]
BRA calc_value

check_max :
; Get the value o f potent iometer and d i sp l ay on output l ed s
LOAD R1 [R5+ADCONVS] ; Load the potent iometer

x

AND R1 %011111111 ; Read only the lower 8 b i t s

LOAD R2 [R5+INPUT]
AND R2 %01
BNE reset

LOAD R3 [GB+MAX]
CMP R3 R1
BGT calc_value
STOR R1 [GB+MAX]

BRA calc_value

reset :
LOAD R0 255
STOR R0 [GB+MIN]
LOAD R0 0
STOR R0 [GB+MAX]

calc_value :
LOAD R0 [GB+MIN]
LOAD R1 [GB+MAX]

; Separate / cy c l e through the d i g i t s
ADD R4 1 ; ADD 1 to the d i sp l ay t imer
MOD R4 600 ; Make sure i t l oops at 600
CMP R4 0 ; i f 0 :
BEQ first ; d i sp l ay the f i r s t d i g i t
CMP R4 100 ; i f 100 :
BEQ second ; d i sp l ay the second d i g i t
CMP R4 200 ; i f 200 :
BEQ third ; d i sp l ay the th i rd d i g i t
CMP R4 300 ; i f 300 :
BEQ fourth ; d i sp l ay the f i r s t raw d i g i t
CMP R4 400 ; i f 400 :
BEQ fifth ; d i sp l ay the second raw d i g i t
CMP R4 500 ; i f 500 :
BEQ sixth ; d i sp l ay the th i rd raw d i g i t

; Loop back to beg inning
BRA main ; In case o f no new d i g i t s e l e c t ed , loop

first :
DIV R0 100 ; input / 100
BRS Dec7Seg ; Turn t h i s va lue in to the d i sp lay−value f o r 7−seg
LOAD R2 %100000 ; S e l e c t the f i r s t 7−seg d i sp l ay
BRA display ; Display t h i s d i g i t

second :
MOD R0 100 ; input MOD 100
DIV R0 10 ; / 10
BRS Dec7Seg ; Turn t h i s va lue in to the d i sp lay−value f o r 7−seg
LOAD R2 %010000 ; S e l e c t the second 7−seg d i sp l ay
BRA display ; Display t h i s d i g i t

third :
MOD R0 10 ; input MOD 10
BRS Dec7Seg ; Turn t h i s va lue in to the d i sp lay−value f o r 7−seg
LOAD R2 %001000 ; S e l e c t the th i rd 7−seg d i sp l ay
BRA display ; Display t h i s d i g i t

fourth :
LOAD R0 R1
DIV R0 100 ; input / 100
BRS Dec7Seg ; Turn t h i s va lue in to the d i sp lay−value f o r 7−seg
LOAD R2 %000100 ; S e l e c t the four th 7−seg d i sp l ay
BRA display ; Display t h i s d i g i t

fifth :
LOAD R0 R1
MOD R0 100 ; input MOD 100
DIV R0 10 ; / 10
BRS Dec7Seg ; Turn t h i s va lue in to the d i sp lay−value f o r 7−seg
LOAD R2 %000010 ; S e l e c t the f i f t h 7−seg d i sp l ay
BRA display ; Display t h i s d i g i t

sixth :

xi

LOAD R0 R1
MOD R0 10 ; input MOD 10
BRS Dec7Seg ; Turn t h i s va lue in to the d i sp lay−value f o r 7−seg
LOAD R2 %000001 ; S e l e c t the s i x th 7−seg d i sp l ay
BRA display ; Display t h i s d i g i t

; Updates the d i sp l ay with Pattern R1 on d i sp l ay R2
display :

STOR R1 [R5+DSPSEG] ; Update the value that has to be d i sp layed
STOR R2 [R5+DSPDIG] ; S e l e c t the r i gh t 7−seg d i sp l ay uni t
BRA main ; Loop f o r e v e r

@END

14.5 Logbook

xii

Meeting # Activity Minutes spend
1 Introduction and expectations 30

Looking at the requirements, deadlines and scoring guidelines 45
Ideas for alternative machine 30
Tutor meeting 45

2 Presentations 60
Menno and Geert tested the motors using the PP2 processor
and their PWM script from computer systems 30
Thijs and Yannick looked at the Belbin roles 30

3 Checking the inventory list 60
We discussed the absence of Lisa with the tutor 30
We discussed the peer reviews with the tutor 10
We discussed some requirements for the alternative machine
with our tutor 10
We discussed building a tic-tac-toe machine and discarded it,
and we decided to build a sorting machine 60
We made a layout for the first prototype of our machine 30

4
Thijs looked at how the H-bridge works and how it needs to be
implemented in the software 15
Testing the prototype using a crude PWM program controlled
by the input buttons 60
Coming up with some requirements we discovered after the
testing 90

5 We made a planning for the rest of the project
Geert missed something in his presentation of the V-model, so
he made some remarks
We discussed Eric and Lisa leaving the group with our tutor 10
The tutor made some suggestions about the Belbin roles and
some general things 15
We discussed the midterm and final presentations with our tutor 5
Menno and Geert tried to implement an OVL-interupt for the
overcurrent detection on the PP2 to be used in the PWM script
and final script 60
Thijs made an UPPAAL model of the software of the first
prototype 60
Menno made some corrections to his Belbin roles after the
suggestions of the tutor 15
We brainstormed for the new design of the machine 90

6 We discussed which components our machine needs 60
Thijs worked on the tube and the mechanism which extracts the
discs from the tube 120
Geert worked on the mechanism which sorts the discs 120
Menno and Yannick worked on the mechanism which includes
the sensors and transports the discs 120

7 Thijs did some tests regarding the over current protection 60
Yannick set up a github repository for the code 15
The tutor came, but we didn't have anything to discuss 10
Geert and Menno worked on the mechanism which moves the
boxes 150
Yannick made some improvements to the mechanism which
extracts discs from the tube 150
Thijs worked on the new UPPAAL model 90

8
Menno and Yannick tried to make the transport belt more
resource efficient 90
Thijs continued working on the new UPPAAL model 90
Geert started working on the assembly program 90
We discussed how we function as a group with the tutor 20
We combined the three parts of the machine 120
We discussed how we want to structure our final report 10
Menno created the LaTeX document 10

9 Thijs revised the mechanism which moves the containers 120
Yannick build a "wall" around the belt to prevent the discs from
falling of, in this wall he also placed some sensors 120
Geert and Menno did some work on the software 120
We worked on the report 90

10 Geert and Menno continued working on the software 210
Thijs hooked up all four lamps on the single 12v output 60
Yannick worked on the report 210
Thijs worked on the report 150

11 Geert and Menno continued working on the software 210
Thijs and Yannick worked on the report 210

12
We discussed our problems with the over current detection with
our tutor 10
We discussed some things about the belbin roles we have to
hand in with our tutor 10
We discussed some things about the midterm presentation with
our tutor 10
We wrote the second reflection on our Belbin roles 60
Geert, Yannick and Menno messed around with the analogue
input of the colour sensor 150
Thijs worked on the new UPPAAL model 150

13 Menno and Yannick worked on the midterm presentation 210
Thijs and Geert worked on the final report 210

14 The tutor gave some feedback on our midterm presentation 30
The tutor gave some feedback on our 2nd belbin roles report 5
Menno and Yannick implemented the changes the tutor
suggested for the presentation, and practiced it 210
Thijs and Geert made some changes to the UPPAAL model,
and also implemented some crude error detection 60
Thijs and Geert worked on the software 150

15
We had trouble with the light sensor, Yannick and Meno made
changes to the light sensor 150
Thijs and Geert implemented the changes to the light sensor in
the UPPAAL model and in the script 150
We did some work on the report 90

16
Yannick and Menno practised the midterm presentation and
also made some changes to it 90
Menno and Geert made a counter to have some delay between
the disc being detected and the next disc being inserted 60
Thijs, and later the rest worked on a new moving box system 60
Geert and Yannick implemented the code which stops the
machine after the last disc has been sorted 60
Thijs worked on the error detection in the UPPAAL model 120

17 We discussed last weeks presentations with our tutor 10
Geert and Menno worked on implemented the emergency
button 120
Thijs and Yannick worked on the report, Geert and Menno
joined later 240

18
Geert and Thijs worked on the implementation of the error
detection in the UPPAAL model 120
Menno did some performance tests 15
Menno and Yannick worked on the report 120
We spend the rest of the meeting trying to solve the "branch
problem" 90

19

We spend the entire meeting trying to solve the "branch
problem", we now now that the assembler creates and offset in
the line numbers (when we use labels) for some reason, and
managed to create a workaround 180

20
Yannick and Menno the exact reason why the "branch problem"
occured 180
Thijs and Geert worked on adding more fault detection 180

21 Yannick and Menno worked on error detection for the boxes 200
We discussed some things about the final presentation with our
tutor 20
Thijs and Geert worked on the presentation 200

22
We took a look at the scoring guide and wrote down some
areas in which we could improve 30
Geert and Thijs tried to solve some issues with the colour
sensor 150
Menno and Yannick did some fixes to the error detection part of
the code 120
Menno and Yannick worked on making a debugging manual 30

23
Menno and Yannick worked on a problem regarding the error
detection of the belt 60
Geert and Thijs practised and worked on the final presentation 60
We worked on the report 90
We provided the tutor with evidence that our machine
functioned correctly and that is could detect and identify errors 36

24 We had a lengthy tutor meeting 45
We worked on proofreading and editing the report 150

25
We made sure the machine will work, replacing broken cables
and checking all subsystems 60
Thijs and Geert practiced their final presentation extensively 120

Yannick and Menno worked on making the assembly code
clearer and cleaner 120

26 We filled in the peer review 10
We all read the report, and made small adjustements before
handing it in 30

	Summary
	Introduction
	System Level Requirements and Use Cases
	Requirements
	Use Cases
	User Constraints

	Prototype 1
	Machine specification
	Machine design
	Machine implementation
	Software specification
	Software design
	Software implementation

	Machine Specification
	Fault Detection
	Ejecting discs
	Moving discs
	Sorting discs

	Software Specification
	Machine Design
	Cam Plate
	Conveyor Belt
	Containers

	Software Design
	Last disc
	Emergency button
	Error detection

	Machine Implementation
	Cam Plate
	Conveyor Belt
	Sensors
	Containers
	Overcurrent protection

	Software Implementation
	Walk through
	Branch problem

	Testing
	Component Tests
	Unit Test
	System Test
	Validation Tests

	Conclusion
	Literature Overview
	Appendix
	Error Manual or Debug Manual
	UPPAAL model
	Source code
	Debug program min_max_brightness
	Logbook

